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ABSTRACT
Psychoacoustic studies show that the strength of masking is,
among others, dependent on the tonality of the masker: the
effect of noise maskers is stronger than that of tone maskers.
Recently, a Partial Spectral Flatness Measure (PSFM) was in-
troduced for tonality estimation in a psychoacoustic model
for perceptual audio coding. The model consists of an Infi-
nite Impulse Response (IIR) filterbank which considers the
spreading effect of individual local maskers in simultaneous
masking. An optimized (with respect to audio quality and
computational efficiency) PSFM is now compared to a sim-
ilar psychoacoustic model with prediction based tonality es-
timation in medium (48 kbit/s) and low (32 kbit/s) bit rate
conditions (mono) via subjective quality tests. 15 expert lis-
teners participated in the subjective tests. The results are de-
picted and discussed. Additionally, we conducted the subjec-
tive tests with 15 non-expert consumers whose results are also
shown and compared to those of the experts.

Index Terms— Perceptual Model, Psychoacoustic Model,
Perceptual Audio Coding, Spectral Flatness, Tonality Estima-
tion

1. INTRODUCTION

One of the main goals of audio coding has been to reduce the
requirements for storage and transmission of the audio signal
data via compression. This is partly done by employing pre-
dictive and entropy coding, which reduce redundancies in the
signal. However, redundancy reduction alone does not lead
to low bit rate audio coding. Hence, in transform-based per-
ceptual audio coding, psychoacoustic models (PM) are used
to control the quantizers of spectral components and conse-
quently reduce irrelevancies in the audio signal. A block dia-
gram of such an audio coder is shown in Figure 1. In the opti-
mal case, after compression, the quantization noise should be
imperceptible to human listeners at the output of the decoder
- i.e. it should lie just below the masking threshold. Audio
coders such as mp3 (MPEG-1/2 Audio Layer 3 [1,2]) or AAC
(MPEG-2/4 Advanced Audio Coding [3, 4] ) use such psy-
choacoustic models which approximate the masking effects
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Fig. 1. Basic structure of a transform based audio encoder.
A transform decomposes frames of the input audio signal in
their spectral components. The psychoacoustic model calcu-
lates estimated masking thresholds for the frames with which
it controls quantization steps for the individual subbands.

to the best possible extent. However, at medium and low bit
rates, the estimated masking threshold has to be violated. Es-
pecially for low bit rate coding of speech and complex sounds,
we see room for improvement in estimating masking thresh-
olds which would bring the best possible subjective audio
quality. Quick switches between tonal and transient-like seg-
ments, especially diverging characteristic changes in various
spectral parts, are challenging.

Psychoacoustic studies show an asymmetry of masking
strengths of tonal and noise-like maskers. Narrowband noise
has a stronger masking effect than a tone of the same energy
placed at its center frequency [5–8]. An example of model-
ing this asymmetry for perceptual audio coding is described
in [9, 10]. Furthermore, latest studies show that human lis-
teners can not necessarily distinguish easily between narrow-
band noise and tone bursts. There is a duration dependent
distinction threshold which lies somewhere between 3 and 30
ms for frequencies up to 2.7 kHz. The duration threshold de-
pends on the center frequency and bandwidth of the narrow-
band noise [11]. The higher the frequency and the wider the
bandwidth, the lower (shorter) the threshold. This is in accord
with the fact that the temporal resolution of the human audi-
tory system increases with frequency [6]. Unlike the conven-
tional psychoacoustic models, our model takes into account
this frequency dependency at the stage of tonality estimation,
and consequently by estimating the masking threshold level.



In Section 2, a filterbank based PM is described. Mask-
ing thresholds are calculated with respect to the frequency de-
pendency of masking for the individual band-pass filters [12].
More specifically, an optimized Partial Spectral Flatness Mea-
sure (PSFM) estimates tonality. By means of subjective tests
(described in Section 3) this model is compared to a simi-
lar model which uses prediction based tonality estimation. In
Section 4, the results are presented and discussed in detail.

2. PSYCHOACOUSTIC MODEL (PM)

Transform based codecs process input signals framewise. For
example, in MPEG Advanced Audio Coding (AAC) [3, 4]
there is a distinction between usage of long frames of 2048
samples for stationary parts, and short frames of 256 sam-
ples for transient parts of signals. In doing so, either high
frequency resolution, or high temporal resolution is achieved,
respectively. As long as the signal segments are strongly har-
monic or strongly transient, this distinction is easily achieved.
However, for more complex sounds, an individual segment of
the signal could have different characteristics along the spec-
tral axis. Therefore, it is desirable to have a PM which ana-
lyzes the signal in a way that the resulting masking threshold
can be used for short frames as well as long frames.

Recently, we introduced a PM [12,13]. It consists of com-
plex IIR1 band-pass filters which take into account the spread-
ing in simultaneous masking [5]. Their center frequencies are
spaced at intervals of Bark/4 (Bark scale: [5, 14]). The struc-
ture of the PM, the filters’ frequency responses and the calcu-
lation of the masking thresholds are detailed in [12, 13]. The
model considers temporal and spectral characteristics of the
signal: for a frame of 1024 samples, it first calculates mask-
ing thresholds for 8 short frames of 128 samples (which leads
to high temporal resolution), and further, a masking threshold
for the long frame by combining the individual thresholds of
the short blocks within the current long block [13].

2.1. Partial Spectral Flatness Measure

Spectral Flatness Measure (SFM) has broadly been used as
a measure of tonality. In [15], SFM is described for the
continuous-frequency case. J. D. Johnston applied discrete
SFM to perceptual audio coding [9, 10, 16]. His model de-
ployed SFM as a distinction measure between tone and noise
maskers while calculating masking thresholds [9, 10]. The
model used short-time power spectrum with fixed analysis
frame length for Bark-wide bands.

In [12], we introduced the tonality measure PSFM as the
ratio of geometric and arithmetic mean of short-time squared
magnitude spectrum, |Sst(k)|2. In that model, the magnitude
spectrum of each IIR-filter output was individually analyzed
by a Discrete Fourier Transform (DFT), and PSFM was cal-
culated for a range of coefficients around its center frequency:

1Infinite Impluse Response

PSFM

calculation

(104 calc.)

masking

threshold

band-

pass filter

(104 Filters)

framing
post-

masking

level

adjustment

individual

masking

threshold

PCM

(104)

DFT

(104 calc.)

Fig. 2. Block diagram of the initial PSFM and calculation of
masking thresholds in the PM [12]. 104 DFTs are applied to
the outputs of the filters. Spectral resolution of PSFM calcu-
lation varies with the DFT length; it is higher for low frequen-
cies. All in all, four different DFT lengths were used. From
the individual masking thresholds of 104 bands, a global
masking threshold is calculated for a short frame.
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where 0 ≤ PSFM ≤ 1, and N = N2−N1+1. The limits
N1 and N2 were chosen in a way that for each filter output
the range extended to the “double of its efficient bandwidth”
(more details in [12]).

The outcome of this model was compared to a similar
model with predictor based tonality estimation [13] by means
of subjective tests. Although the models showed distinct abil-
ities in compression of different types of audio items, there
was no significant difference between these models.

As depicted in Figure 2, in this initial model, the “shaped”
(filtered) outputs of the preceding filter stage were the inputs
of the PSFM [12]. This led to two shortcomings: first, since
PSFM was not calculated from the original input signal, even
for white noise input, the measure has never achieved the
maximum flatness. Second, the calculation had a high com-
putational complexity whereby 104 Fast Fourier Transforms
(FFT) had to be considered.

In order to overcome these problems, a further optimized
model for PSFM is presented here. The block diagram of the
PM (including the optimized PSFM) is shown in Figure 3.
For the input signal, short-time spectra of different spectral
resolutions are generated by DFTs of different lengths (4096,
2048, or 1024 for low, middle and high frequencies, respec-
tively). PSFM is calculated corresponding to the individual
band-pass filters (over double of their efficient bandwidth).
In doing so, only 3 FFTs were needed.

A transform audio coding scheme with Modified Discrete
Cosine Transform was chosen. We used fixed frame length of
1024 samples for coding. The PMs were applied to the coding
structure. Although entropy coding was not applied, entropy
rates were estimated. By applying a scaling factor to the cal-
culated masking thresholds, the codecs could be brought to
desired average data rates, estimated for a large set of stan-



Fig. 3. PM with the optimized PSFM: varying DFT lengths are
shown for analysis of the input signal at low, middle and high
frequencies (4096, 2048 and 1024, respectively). From the
individual masking thresholds of 104 bands, a global masking
threshold is calculated for a short frame.

dard test audio signals. For subjective tests, the codecs under
test were designed to have equal average entropy rates of 48
kbit/s (medium quality) and 32 kbit/s (low quality).

3. SUBJECTIVE TESTS

By means of MUSHRA (Multiple Stimuli with Hidden Ref-
erence and Anchor) [17] test, the optimized PSFM was com-
pared to the prediction based tonality estimation. Initially, we
conducted a pilot MUSHRA test with 3 audio items, in which
5 listeners participated. The results of this test showed a ten-
dency for higher subjective quality ratings of PSFM for all 3
items. The average entropy rate was 48 kbit/s. Based on these
results, we decided to test the items at different average en-
tropy rates. The hypothesis was that, presumably, in a lower
quality range the differences would be more distinct.

For the final MUSHRA test a set of 9 items (all mono with
48 kHz sampling frequency) with various characteristics were
used in two item-groups:
1. speech and vocal

• es01 - Female vocal, “Tom’s Diner”
• es02 - German male speech
• es04 - English male speech
• es05 - German female speech

2. music
• si01 - Harpsichord
• si02 - Castanet
• sc02 - Symphony orchestra
• sc03 - News intro
• pipe-short10 - Pitch-pipe

These two item-groups were presented to the subjects in
two separate test sessions, otherwise the test would have taken
more than 50 minutes, including the training phase. Subjects
took between 15 and 25 minutes for each test session.

The subjects performed the MUSHRA test using a Graph-
ical User Interface (GUI) developed by Fraunhofer-IIS. The
GUI is depicted in Figure 4. For each audio test item, sub-

Fig. 4. The GUI for the MUSHRA test: e.g. for the item “Ger-
man male speech”, 6 different conditions were compared to
the reference. The conditions (hidden reference, low anchor,
Predictor48, PSFM48, Predictor32 and PSFM32) were ran-
domly placed from 1 to 6.

jects rated the quality of each condition in comparison to the
reference/original. The conditions for each item were:
• a hidden reference
• the coded version with predictor based tonality estimation

with average entropy rate of 48 kbit/s
• the coded version with PSFM tonality estimation with av-

erage entropy rate of 48 kbit/s
• the coded version with predictor based tonality estimation

with average entropy rate of 32 kbit/s
• the coded version with PSFM tonality estimation with av-

erage entropy rate of 32 kbit/s
• a low pass filtered anchor (fc = 3.5 kHz)

Subjects were asked to rate the hidden reference at 100
and the low anchor at 20, as far as they could detect these. In
the MUSHRA test, the order of appearance of the audio files
(items) and the order of the codecs (conditions) were random-
ized, as described in detail in [17].

Table 1 shows the estimated entropies for the 9 items for
both cases (48 and 32 kbit/s), and for white noise (not in-
cluded in the subjective test; used only as a controlling item
for compression ability throughout the implementation).

Items Predict. PSFM Predict. PSFM
(48) (48) (32) (32)

Female vocal 50.30 51.58 31.58 32.16
Ger. m. speech 57.05 47.73 36.39 29.76
Eng. m. speech 51.86 44.31 33.16 28.12
Ger. f. speech 61.93 53.88 42.66 36.53
Harpsichord 45.86 53.12 30.86 37.32
Castanet 73.12 69.08 51.61 48.84
S. orchestra 42.97 42.55 28.17 27.76
News intro 47.68 51.05 31.58 33.36
Pitch-pipe 50.97 48.69 38.00 35.51
Noise 56.50 66.10 34.65 45.39

Table 1. Estimated entropy rates in kbit/s for different items.



(a)

(b)

Fig. 5. Results of MUSHRA tests for (a) 15 expert and (b) 15 non-expert subjects. Abscissa shows different items (and their
conditions). Subjective quality ratings of different conditions of the items are depicted. Ordinate shows a scale between 0 and
100 (spanning a quality range from bad to excellent). Mean values and confidence intervals (95%) are shown.

Prior to the test, subjects were asked to take a similar
MUSHRA training test with 2 audio items and 4 conditions.
All participants were asked whether they consider themselves
to have normal hearing, whether they have ever experienced
hearing loss and whether they are healthy at the moment of
study (no flu, etc.). Furthermore, audiometry tests were con-
ducted with the subjects to confirm their hearing threshold.
For the actual MUSHRA test, subjects were chosen who had
had experience in MUSHRA tests within the last year, and
who are considered as expert listeners according to [17].

Since not all consumers are experts in audio coding, we
also conducted the same series of MUSHRA tests with non-
expert listeners. The results of 4 of the non-expert partici-
pants are not considered in the following statistics (based on
their responses to hidden reference and anchor). They either
did not understand the task sufficiently, or had severe diffi-
culty in distinguishing the hidden reference and anchor from
other conditions. All 30 subjects, whose results are listed in

the statistics, fulfilled the health criterion, had normal hear-
ing and responded acceptably for the hidden reference and
anchor, according to the criteria of [17]. Average age of the
experts and non-experts was 32 and 23, respectively.

4. RESULTS

MUSHRA test results of the 15 expert subjects are depicted
in Figure 5a. The 9 audio items are listed along the abscissa
including their 6 conditions. The graph shows average sub-
jective quality ratings for the different conditions of the audio
items over the ordinate. For each item the average quality rat-
ing and the corresponding 95% confidence interval are shown.
We analyzed the results and compared those of the two “48
kbit/s”-coded versions to each other and those of the two “32
kbit/s”-coded versions to each other, using two-tailed paired
t-tests. Significant differences (p < 0.05) are shown with
“ * ” in Figure 5a. For most of the items in medium bit rate



cases, there are no significant differences between the mod-
els. However, in low bit rate cases, for 7 items, the model
with PSFM was rated significantly higher than the predictor
based model.

Figure 5b shows results of the MUSHRA test with non-
expert listeners. As expected [18], the results of different
coded versions are closer to each other and to the hidden refer-
ence. Significant differences are marked with “ * ”, as above.
Here as well, the results of the same 7 items show significant
preference of PSFM in low bit rate cases.

There is a preference for the optimized PSFM for non-
speech signals, most significantly at low bit rates. For speech
signals, despite higher compression (lower entropy rates, Ta-
ble 1), PSFM achieves comparable quality to the other model.

5. CONCLUSION

An improved tonality estimation method is described which
was implemented in a filterbank-based PM. The model can
work independent of the block lengths of audio coding, as
it operates with a frequency dependent temporal and spectral
resolution well adapted to that of the human auditory system.
The new enhanced PSFM has computational advantages over
the initial model and leads to good subjective qualities. For
non-speech signals, the optimized PSFM reaches higher rat-
ings, especially in the low bit rate case where all the differ-
ences are significant. This improved version is computation-
ally more efficient, and could be an alternative to the predic-
tion based tonality estimation.
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