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ABSTRACT
Maximally flat digital differentiators are widely used as
narrow-band digital differentiators because of their high ac-
curacy around their center frequency of flat property. To
obtain highly accurate differentiation over narrow-band, it
is important to avoid the undesirable amplification of noise.
In this paper, we introduce a design method of linear phase
FIR band-pass differentiators with flat passband and equirip-
ple stopband characteristics. The center frequency at the
passband of the designed differentiators can be adjusted ar-
bitrarily. Moreover, the proposed transfer function consists
of two functions, i.e. the passband function and the stopband
one. The weighting coefficients of the passband function are
derived using a closed-form formula based on Jacobi Polyno-
mial. The weighting coefficients of the stopband function are
achieved using Remez algorithm.

Index Terms— Digital differentiators, maximally flat,
Remez algorithm, closed-form, Jacobi polynomial

1. INTRODUCTION

Digital differentiators (DDs) are widely used, like accelera-
tion estimation in motion controllers [1], edge extraction in
image processing [2], and so on. Various FIR approximations
of the frequency response of DDs have been reported, which
are based on the minimax relative error criterion [3,4] as well
as the maximally flat criterion [5–10]. The minimax relative
error design methods are highly suitable for wide-band DDs,
while the maximally flat designs are particularly adaptable
for narrow-band operations centered on a certain frequency.
For example, in airborne Doppler navigation systems [11], it
is necessary to perform differentiation around the frequency
range from π/12 to π/6 with extremely high accuracy (rela-
tive error ≤ -140dB), typically. In such a situation, the min-
imax relative error designs for narrow-band would be com-
putationally inefficient and uneconomical as compared to the
maximally flat designs [5].

To obtain highly accurate differentiation over narrow-
band, it is important to avoid undesirable amplification of
noise. Several design methods have been proposed to avoid

it. One of these methods provides the cascade of a digital
filter for band limiting and a DDs. To maximize the stop-
band attenuation and to obtain the steep cutoff characteristic
simultaneously, the digital filter for band limiting would be
designed with the minimax relative error criterion. On the
contrary, if we cascade the minimax relative error band lim-
iting filter and the maximally flat differentiator (MFDDs),
the accuracy of differentiation is reduced because of the rip-
ple in the passband. To avoid the ripple in the passband,
the design method of the low-pass MFDDs is proposed [8].
The transfer function of this low-pass MFDDs is provided
as a closed form expression. Although the low-pass MFDDs
avoid undesirable amplification of noise, the maximally flat
designs can not achieve the steep cutoff characteristic. To
solve this problem, the design method of low-pass DDs hav-
ing flat monotonic passband and equiripple stopband have
been proposed in [12]. This method provides highly accurate
differentiation over narrow-band with the steep cutoff char-
acteristic, however, it can not adjust the center frequency of
passband expect the frequency 0.

In this paper, we describe a new design method of TYPE
IV linear phase FIR band-pass DDs with flat passband and
equiripple stopband (MF-ERDDs). Using a DD with rip-
pleless passband, you can reduce the distortion of the signal
caused by the DD. On the other hand, using a DD with an
equiripple stopband, you can maximize the stopband attenu-
ation and obtain the steep cutoff characteristic. Furthermore,
the proposed method can adjust the center frequency of pass-
band. Hence, the proposed method can perform efficient dif-
ferentiation according to applications.

2. THE DESIGN ALGORITHM

In this section, we show a design method of the TYPE IV
band-pass MF-ERDDs.

DDs are designed as one of linear phase digital FIR fil-
ters. Generally, linear phase digital FIR filters are classified
into four types [13]. These four types differ in order (even or
odd) and the symmetry of the impulse response (symmetry or
antisymmetry). Due to purely imaginary frequency response,
DDs can only be designed by antisymmetric impulse response



sequences, i.e. h(n) = −h(N − 1 − n), where h(n) are the
filter coefficients and N is the filter order. Consequently, the
frequency response of DDs is given by

H(ejω) = ej(π/2−ωN/2)H0(ω), (1)

where H0(ω) is a real function of ω given by

H0(ω) =

(N−1)/2∑
n=0

h̃(n) sin

{(
n+

1

2

)
ω

}
, N odd, (2)

and

h̃(n) = 2h

(
N − 1

2
− n

)
, 0 ≤ n ≤ N−1

2 . (3)

The frequency response of the ideal (full-band) DD is de-
scribed as

HF

(
ejω

)
= ejπ/2ω, | ω |< π, (4)

while the frequency response of the ideal band-pass MF-
ERDD is described as

HBP

(
ejω

)
=


0, | ω |< ωL

jω, ωL <| ω |< ωH

0, ωH <| ω |< π.

(5)

Here ωL and ωH are lower and higher cutoff frequency, re-
spectively. From (5), we have the constraints for the passband
of the proposed band-pass MF-ERDD given as

H0(ω)|ω=ω0 = ω0 (6a)
dH0(ω)

dω

∣∣∣∣
ω=ω0

= 1 (6b)

dnH0(ω)

dωn

∣∣∣∣
ω=ω0

= 0 n = 2, 3, · · ·, L, (6c)

where L is the degree of flatness for ω0 and an integer. In
the proposed method, we give the function of TYPE IV MF-
ERDDs as

H0(ω)=arccos(−x)− (1 + x)1/2(x− x0)
L+1Hs(x)

=(1+x)1/2
{
arccos(−x)
(1+x)1/2

−(x−x0)
L+1Hs(x)

}
,

(7)

where {
x = − cosω, 0 ≤ ω ≤ π

x0 = − cosω0, 0 ≤ ω0 < π,
(8)

and Hs(x) is the correction function to make H0(e
jω) having

equiripple stopband.

To design H0(e
jω) satisfying (6), arccos(−x)/(1+x)1/2

must have the degree of flatness at least L. Then, we consider
the following power series expansion:

arccos(−x)

(1 + x)1/2
=

∞∑
n=0

tn(x0)(x− x0)
n, (9)

where
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1
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Jacobi polynomial [14] is given as

Pα,β
n (x)=(−2)n(1−x)−α(1+x)−β

1

n!

dn

dxn
(1−x)α+n(1+x)β+n

=2−n
n∑

v=0

(
n+ α

v

)(
n+ β

n− v

)
(x−1)n−v(x+1)v.

(11)

By using (11), we define qκ,µn (x0) as

qκ,µn (x0)=(−2)n(1− x0)
−κ−n(1 + x0)

−µ−n

· P−κ−n,−µ−n
n (x0). (12)

Then, (9) can be denoted as

arccos(−x)

(1 + x)1/2
=

∞∑
n=0

tn(x0)(x− x0)
n (13)

tn(x0)=
n∑

i=0

ri(x0)q
0,1/2
n−i (x0) (14)

ri(x0)=

{
arccos(−x0), i = 0

1/iq
1/2,1/2
i−1 (x0), other.

(15)



Because (13) is decomposed as

arccos(−x)

(1 + x)1/2
=

L∑
n=0

tn(x0)(x− x0)
n

+
∞∑

n=L+1

tn(x0)(x− x0)
n

=
L∑

n=0

tn(x0)(x− x0)
n + (x− x0)

L+1

·
∞∑

n=0

tn+L+1(x0)(x− x0)
n, (16)

the minimal degree of arccos(−x)/(1 + x)1/2 to satisfy (6)
is L. Hence, (7) is rewritten as

H0(ω)=(1+x)1/2
{
TL(x)−(x−x0)

L+1Hs(x)
}

(17)

TL(x)=
L∑

n=0

tn(x0)(x− x0)
n (18)

Hs(x)=

Ns∑
n=0

hs(n)x
n, (19)

where hs(n) is the coefficient of Hs(x). The filter order N of
the proposed MF-ERDDs is given as

N = 2

(
L+

3

2
+Ns

)
, (20)

where Ns is the order of Hs(x) and L is an odd integer since
H0(e

jω) with the band-pass property should be convex at ω0.
Now, we introduce the weighted error function E(x) de-

fined as

E(x) = W (x) | D(x)−H0(x) | . (21)

In the proposed method, the estimation of E(x) is done only
for stopband so that D(x) for stopband is set to 0. By substi-
tuting (17) into (21), E(x) can be rearranged as

Ẽ(x) = W̃ (x) | D̃(x)−Hs(x) |, (22)

where

W̃ (x) = (1 + x)1/2(x− x0)
L+1W (x) (23)

D̃(x) =
TL(x)

(x− x0)L+1
. (24)

With

hs = [hs(0) hs(1) · · · hs(Ns)]
T,

and Xs which is a set of x in the stopband, then we have the
following min-max design problem of hs

minimize
hs

[maximize
x∈Xs

Ẽ(x)]. (25)

By using Remez algorithm, this design problem is solved.
Then, the equiripple stopband is achieved.
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Fig. 1. The design examples with different N

Table 1. The minimum stopband attenuation of Fig. 1

N 21 25 29 33
Atten.[dB] -9.00 -15.88 -23.10 -30.43

3. THE DESIGN EXAMPLES

In this section, we will illustrate some magnitude responses
of the TYPE IV band-pass MF-ERDDs designed by the pro-
posed method. The parameters of the proposed method are
the filter order N , the normalized center angular frequency
ω0, the degree of flatness L, the stopband normalized edge
angular frequencies ωs = (ωs1, ωs2), and the weight function
W (ω). Note that in this section, W (ω) is set as W (ω) = 1.

Example 1: In this example, we illustrate the relation be-
tween N and the stopband attenuation. Fig. 1 shows the
magnitude response for a family of the band-pass MF-ERDDs
with ω0 = 0.5π, L = 3 and ωs = (0.35π, 0.65π), where N
is varied from 21 to 33 in increments of 4. The minimum
stopband attenuation of each MF-ERDDs are shown in table
1. From Fig. 1, we confirm that the proposed method can
design DDs having maximally flat passband and equiripple
stopband. It is also seem from Fig. 1 and table 1 that the
larger stopband attenuation is achieved by increasing the fil-
ter order N with fixed L. Moreover, it is seen from Fig. 1 that
the transition bands become steeper by increasing N .

Example 2: In this example, we illustrate to realize the
band-pass MF-ERDDs with an arbitrary center frequency.
Fig. 2 shows the magnitude responses for a family of the
band-pass MF-ERDDs with N = 41 and L = 3, where
ω0 is varied from 0.2π to 0.8π in increments of 0.2π. Ac-
cording to ω0, we set ωs as (0.05π, 0.35π), (0.25π, 0.55π),
(0.45π, 0.75π), (0.65π, 0.95π). Note that the bandwidth
between ωs1 and ωs2 is not changed. From Fig. 2, we con-
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Table 2. The minimum stopband attenuation of Fig. 2

ω0 0.2π 0.4π 0.6π 0.8π
Atten.[dB] -48.12 -46.10 -45.45 -39.62

firm that the proposed transfer function can adjust the center
frequency arbitrarily. The minimum stopband attenuation
of each MF-ERDDs are shown in table 2. From table 2,
the minimum stopband attenuation becomes a little smaller
with setting ω0 as a high frequency. Hence, when you set
ω0 as a high frequency, N should be large compared with
MF-ERDDs whose ω0 is set as a low frequency.

Example 3: In this example, we illustrate the relation be-
tween L and the bandwidth having maximally flat property
(flat bandwidth). Fig. 3 shows the magnitude response for a
family of the band-pass MF-ERDDs with N = 33, ω0 = 0.5π
and ωs = (0.25π, 0.75π), where L is varied from 1 to 7
in increments of 2. From Fig. 3, the flat bandwidth of the
band-pass MF-ERDDs is widened with increasing value of
L. The minimum stopband attenuations of each MF-ERDDs
are shown in table 3. As shown in table 3, the minimum stop-
band attenuation becomes smaller with increasing value of L
because of fixed N and ωs.

4. CONCLUSION

In this paper, we presented a design method of TYPE I V lin-
ear phase FIR band-pass digital differentiators having max-
imally flat passband and equiripple stopband (MF-ERDDs).
For passband, MF-ERDDs can reduce the distortion of the
signal caused by DDs. On the other hand, for stop band, MF-
ERDDs can maximize the stopband attenuation and achieve
the steep cutoff characteristic. It is most important that the
proposed method can adjust the arbitrary center frequency of
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Table 3. The minimum stopband attenuation of Fig. 3

L 1 3 5 7
Atten.[dB] -108.61 -76.20 -50.12 -29.20

passband. Hence, the proposed method can perform efficient
differentiation according to applications. To design the band-
pass MF-ERDDs, we indicated the function of MF-ERDDs
which satisfy the constraint of maximally flat passband at an
arbitrary frequency. Then, using Remez algorithm, the coeffi-
cient of the correction function is achieved, which realizes the
equiripple stopband. The parameters of the proposed method
are the filter order, the normalized center frequency of pass-
band, the stopband edge frequencies and the weight function.
Finally, through some design examples, we confirm the rela-
tion between the magnitude response of MF-ERDDs and the
parameters.
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