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ABSTRACT

We consider the problem of dictionary learning under the

assumption that the observed signals can be represented as

sparse linear combinations of the columns of a single large

dictionary matrix. In particular, we analyze the minimax risk

of the dictionary learning problem which governs the mean

squared error (MSE) performance of any learning scheme,

regardless of its computational complexity. By following an

established information-theoretic method based on Fano’s

inequality, we derive a lower bound on the minimax risk for

a given dictionary learning problem. This lower bound yields

a characterization of the sample-complexity, i.e., a lower

bound on the required number of observations such that con-

sistent dictionary learning schemes exist. Our bounds may be

compared with the performance of a given learning scheme,

allowing to characterize how far the method is from optimal

performance.

Index Terms— Dictionary Identification, Dictionary Learn-

ing, Big Data, Minimax Risk, Fano Inequality.

1. INTRODUCTION

Consider observing N signals yk ∈ R
m, k = 1, . . . , N ,

which are assumed to be sparse linear combinations of the

columns of an underlying dictionary D ∈ R
m×p. Each signal

yk is an i.i.d. realization of the random vector

y = Dx+w. (1)

The matrix D ∈ R
m×p, with p ≥ m, is the underlying dic-

tionary we wish to learn. The random vector x ∈ R
p is a

sparse coefficient vector and w ∈ R
m denotes zero-mean

additive white Gaussian noise with variance σ2 > 0, i.e.,

w ∼ N (0, σ2I). The dictionary learning problem is rele-

vant to a wide range of applications and has been studied ex-

tensively. In particular, dictionary learning is applied to Big

Data applications aiming at discovering an intrinsic low di-

mensional structure in very high-dimensional data, in order

to make the processing of this data flood tractable.

State of the Art: A variety of (locally) efficient learning

schemes have been proposed and analyzed in the literature

(e.g., [1, 2, 3, 4, 5, 6]). In [6] the authors apply a variant of

the approximate message passing scheme [7] to the dictionary

learning problem. The works in [2, 3, 4, 5, 8] consider esti-

mates of the dictionary obtained by solving the (non-convex)

minimization problem

min
D,X

‖Y −DX‖2F + λ‖X‖1, (2)

where the kth columns of X and Y are given by the kth

i.i.d. realizations yk and xk, respectively, and ‖X‖1 :=∑
k,l |Xk,l|. The authors of [2, 3, 4] give upper bounds on the

distance between the generating dictionary and the nearest

local minimum of (2). Based on these characterizations of

the local minima, it has been shown in [4], for the noiseless

and square dictionary setting, that N ∝ p log(p) observa-

tions are sufficient to guarantee local identifiability of the

generating dictionary. By contrast, the authors of [3] obtain a

sample-complexity of N ∝ p3m in the case of overcomplete

dictionaries and noisy observations. The analysis presented

in [2, 3, 4] is conceptually different from our analysis, since

we focus on the (worst-case) MSE of learning schemes,

whereas [2, 3, 4] characterize the existence of local minima

(of (2)) close to the generating dictionary. We would also

like to mention an exciting recent line of work [9, 10, 11, 12]

presenting dictionary learning schemes that are proven to

globally recover the generating dictionary.

Contribution: By now there have been proposed quite a

few dictionary learning schemes, whose performance is the-

oretically analyzed in terms of a characterization of the sam-

ple size sufficient for (local) identification of the generating

dictionary. However, an investigation of fundamental per-

formance limits for the dictionary learning problem seems

to be missing. Here, we close this gap and present a lower

bound on the minimax risk for the dictionary learning prob-

lem, where the estimation quality is measured by the Frobe-

nius norm. This bound applies to any algorithm, regardless of

its computational complexity and seems to be the first anal-

ysis that targets directly the MSE of learning schemes. For

the derivation of the lower bound, we make use of an estab-

lished information-theoretic approach to minimax estimation,

which is based on Fano’s inequality [13]. Although this ap-

proach has been successfully applied to several other (sparse)

estimation problems [14, 15, 16, 17], the adaptation of this

method to the problem of dictionary learning for sparse cod-

ing seems to be new.



Outline of the Paper: We begin in Section 2 with a for-

malization of the problem setup and discuss the adaption of

the information-theoretic proof method (for lower bounding

the minimax risk) to this setting. A lower bound on the min-

imax risk for dictionary learning is presented in Section 3. A

sketch of the proof is given in Section 4.

Notation: Given a natural number k ∈ N, we define the

set [k] , {1, . . . , k}. For a matrix A ∈ R
m×p, we denote its

Frobenius norm by ‖A‖F ,
√
Tr{AAT }. The kth column

of the identity matrix is denoted by ek. The complementary

Kronecker delta is denoted by δ̄l,l′ , where δ̄l,l′ = 0 if l = l′

and is equal to one otherwise. The determinant of a square

matrix C is denoted by |C|. We denote by EZ{·} the expec-

tation w.r.t. the distribution of the random vector or matrix

Z.

2. PROBLEM FORMULATION

2.1. The Dictionary Learning Problem

Consider the model (1). We collect the measurements into the

observation matrix

Y :=
(
y1, . . . ,yN

)
∈ R

m×N , (3)

where yk is an i.i.d. realization of the random vector given

by (1). The underlying generating dictionaryD is modeled as

deterministic but unknown. We assume the columns of D to

be normalized, i.e.,

D ∈ D , {B ∈ R
m×p|‖Bej‖2 = 1, for all j ∈ [p]}. (4)

The set D is known as the oblique manifold [3]. Moreover, we

assume the true dictionary D to be obtained as a small pertur-

bation of a known “reference dictionary” D0. In particular,

for some small radius r > 0, we require

D ∈ X (D0, r) := {D′ ∈ D : ‖D−D0‖F ≤ r} (5)

The statistics of the coefficient vector x is modeled such

that it is a strictly s-sparse vector. In particular, we introduce

the random variable i, which is chosen uniformly at random

(u.a.r.) from the set [
(
p
s

)
]. A specific value of i represents

a certain index set S(i) ⊆ [p] containing s different indices.

More formally, the map

S(·) :
[(

p

s

)]
→ E , {I ⊆ [p], |I| = s} (6)

is a bijection from the first
(
p
s

)
natural numbers to the set E of

all size-s subsets I of [p].
The random variable i selects the active coefficients of x,

i.e.,

supp(x) = S(i), and xS(i) ∼ N (0, σ2
aI). (7)

The (unconditional) covariance matrix of the sparse coeffi-

cient vector x is given by

Σx , E{xxT } = (s/p)σ2
aI. (8)

We define the signal to noise ratio of the observation model

(1) as SNR := (σa/σ)
2.

Since the columns of Y are i.i.d. realizations of the

vector y in (1), the conditional probability density function

(pdf) of the observation Y, given the N i.i.d. realizations

i = (i1, . . . , iN) of the random support index i, is

fD(Y|i) =
∏

k∈[N ]

exp
(
− (1/2)yT

k Σ
−1
y|ik

yk

)

(2π)m/2
∣∣Σy|ik

∣∣1/2
.

Here, Σy|i , E
{
yyT

∣∣i
}

denotes the conditional covari-

ance matrix of y, given i, and reads explicitly as Σy|i =
σ2
aDS(i)D

T
S(i) + σ2I.

We note that any learning scheme based on the model (1)

faces an intrinsic sign and permutation ambiguity for the dic-

tionary D. Indeed, by observing Y only, one cannot dis-

tinguish between dictionaries which are related via column

permutations and sign-flips of the columns [3, 4]. While we

do not take this intrinsic ambiguity into account explicitly,

our results are meaningful as they apply to dictionary learn-

ing problems where the true dictionary belongs to the (small)

neighborhoodX (D0, r) of a known reference dictionary D0.

We investigate the fundamental limits on the accuracy

achievable by any learning scheme producing an estimate

D̂(Y) of the underlying dictionary based on the observation

Y. For the moment, suppose that we have access to the co-

efficients x in (1) and the estimate D̂ is held fixed, i.e., does

not depend on the observation Y. Then, we obtain for the

prediction error, when using the estimate D̂ instead of the

generating dictionary D,

Ex{‖Dx− D̂x
∥∥2} (8)

= (s/p)σ2
a‖D− D̂‖2F. (9)

Therefore, the prediction error is proportional to the squared

Frobenius norm of the estimation error D− D̂. Based on (9),

we measure the accuracy of a specific learning scheme D̂(·)
by the MSE ε(D, D̂(·)) , EY{‖D̂(Y) − D‖2F}. Note that

the MSE depends on the underlying generating dictionary D

and the learning scheme D̂(·).
Define the minimax risk ε for the problem of learning the

dictionary D based on the observation of N i.i.d. realizations

of y in (1), as

ε , inf
D̂

sup
D∈X (D0,r)

ε(D, D̂(·)). (10)

The minimax risk ε will in general depend on the number of

observations N , the dimension m of the observed signals, the

number of signal expansion coefficients p, the sparsity degree

s and the variance parameters σ2
a and σ2. However, to lighten

notation, we will not make this dependence explicit. Our

goal is to develop a lower bound on ε using an information-

theoretic method.

Having a lower bound for the minimax risk allows us to

asses the performance of a given dictionary learning scheme.



In particular, if the MSE of a given algorithm is close to the

minimax risk, or a lower bound to it, then there is little point to

hope for finding improved techniques with substantially better

performance.

2.2. Information Theory of Dictionary Learning

Our approach to bounding the minimax risk ε of (10) is to use

the information-theoretic method put forward in [18, 14, 16].

However, the key challenge in applying this technique is the

fact that the vector y given by (1) does not follow a multi-

variate normal distribution. Indeed, due to the prior model

for the coefficient vector x (cf. (7)), the vector y follows a

Gaussian mixture model, with a mixture component associ-

ated with each specific value of the support index i.

In order to apply the information-theoretic technique, it is

necessary to have a precise characterization of the mutual in-

formation I(Y; l) between the observation Y and a random

index l which selects the generating dictionary D = D(l)

u.a.r. from a finite set D0 ⊆ D. Obtaining a bound on I(Y; l)
typically involves the analysis of the Kullback Leibler (KL)

divergence between the distributions of Y implied by differ-

ent dictionaries D = D(l). However, exact characterizations

of the KL divergence between Gaussian mixture models is in

general not possible and one has to resort to approximations

or bounds [19].

A main conceptual contribution of this work is a strategy

to avoid evaluating KL divergences between Gaussian mix-

ture models. Instead, we rely on the following decomposition,

which follows from the chain rule for mutual information,

I(Y; l) = I(Y, i; l)− I(l; i|Y)

= I(Y; l|i) + I(l; i)︸ ︷︷ ︸
=0

−I(l; i|Y)

= I(Y; l|i)− I(l; i|Y). (11)

Here, I(Y; l|i) denotes the conditional mutual information

between the observation Y and the random index l, given the

support indices i = (i1, . . . , iN). The components of the de-

composition in (11) have particular interpretations. The term

I(Y; l|i) characterizes the difficulty of detecting the (index

of the) generating dictionary D = D(l), if we had access to

the indices ik selecting the active coefficients of xk. The sec-

ond term, i.e., I(l; i|Y) quantifies the dependence between

the support of the sparse coefficient vector x and the (index l
of the) generating dictionary D = D(l), after observing Y.

Since I(l; i|Y) ≥ 0 [13, Ch. 2], we can upper bound

I(Y; l) by upper bounding I(Y; l|i). Note that, conditioned

on the support index i, the data vector y in (1) follows a nor-

mal distribution with covariance matrix Σy|i, which renders

the problem of upper bounding I(Y; l|i) tractable. We detail

this proof technique in Section 4.

3. A LOWER BOUND ON THE MINIMAX RISK

A typical requirement for sparse (compressed sensing) recov-

ery to work well, even when the dictionary D in (1) is known,

is the validity of [20, 21]

m ≥ c0s log(p/s), (12)

with some absolute constant c0. Since we consider the more

difficult problem of dictionary learning, i.e., we treat the dic-

tionary as an unknown parameter, we expect (12) to be a nec-

essary requirement for the existence of accurate dictionary

learning schemes.

Our main result is the following lower bound on the min-

imax risk for a given dictionary learning problem.

Theorem 3.1. Consider a dictionary learning problem based

on N i.i.d. observations following the model (1) and the true

dictionary satisfying (5) with r ≤ 1/
√
p. Then, if

p > 64, and m ≥ 192s(9 + 2 log(p/s)), (13)

the minimax risk ε is lower bounded as

ε ≥ min

{
r2/16,

SNR−1p2

5120Ns

}
. (14)

We highlight the fact that Theorem 3.1 does not place any

assumptions (like incoherence or restricted isometry proper-

ties) on the underlying generating dictionary.

For sufficiently large sample-size N , such that N≫p2/s,

the second bound in (14) will be in force. This bound shows a

dependence on the sample-size via 1/N which clearly makes

sense. Indeed, by averaging the outcomes of a learning

scheme over blocks of independent observations the MSE is

expected to scale inversely proportional to the sample size

N . This dependence of the MSE on the sample-size is also

observed in the empirical results of simulation studies for

specific learning schemes in [3, 1]. Moreover, the theoretic

results presented in [3, 22] suggest that the estimation error of

certain learning schemes, measured by the squared Frobenius

norm, scales inversely proportional to N .

For the case of constant sparsity, i.e., when s ≤ C0 for

some constant (independent of p) our lower bound scales as

Θ(p2/N), suggesting a sample-complexity of Θ(p2). This

scaling is considerably smaller than the sample complexity

O(p3m), which [3] proved to be sufficient in the noisy and

over-complete case, such that the estimator based on mini-

mizing (2) performs well.

4. PROOF OF THE MAIN RESULT

The proof of Theorem 3.1 is based on reducing the minimax

estimation problem (10) to a specific multiple hypothesis

testing problem. In particular, we assume that the gen-

erating dictionary D in (1) is taken from a finite subset

D0 , {D(l)}l∈[L] ⊆ X (D0, r) for some L ∈ N. This

subset D0 is constructed such that (i) any two distinct dictio-

naries D(l),D(l′) ∈ D0 are separated by at least
√
8ε, i.e.,



√
2ε

√
8ε
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D(1)D(2)

D(3)D(4)

D̂(Y)

Fig. 1. Finite ensemble D0 of size L = 4.

‖D(l) −D(l′)‖F ≥
√
8ε and (ii) it is hard to detect the gener-

ating dictionary D if it is drawn u.a.r. from D0. However, we

do not specify a deterministic scheme to construct such a set

D0. We merely use a probabilistic method to show that there

must exist at least one such set D0. The existence of D0 then

yields, via Lemma 4.1, a relation between the sample-size N
and the remaining model parameters m, p, s, σa, σ which has

to be satisfied such that an estimator with worst-case MSE

not exceeding ε may exist.

In Fig. 1, we sketch the idea of this method for the partic-

ular case of a subset D0 := {D(1), . . . ,D(4)} containing four

dictionaries D(l) ∈ X (D0, r). We also show a realization

of the estimator D̂(Y). Two different dictionaries in D0 are

separated by at least
√
8ε. In particular, if D̂(Y) is a learning

scheme achieving the minimax risk in (10), then the minimum

distance detector

argmin
D′∈D0

‖D̂(Y) −D′‖F

recovers the correct dictionary D ∈ D0 if D̂(Y) belongs

to the ball B(D,
√
2ε) (indicated by a dashed circle in Fig.

1) centered at D and with radius
√
2ε. The information-

theoretic method [15, 14, 18] of lower bounding the minimax

risk ε consists then in relating the probability P
{
D̂(Y) /∈

B(D,
√
2ε)

}
to the mutual information between the observa-

tion Y and the dictionary D which is assumed to be drawn

u.a.r. from D0.

In particular, our analysis is based on the construction of

a finite set D0 , {D(1), . . . ,D(L)} ⊆ X (D0, r) of L dis-

tinct dictionaries belonging to D (cf. (4)) having the follow-

ing desiderata:

• For any two dictionaries D(l),D(l′) ∈ D0,

‖D(l) −D(l′)‖2F ≥ δ̄l,l′8ε. (15)

• If the generating dictionary in (1) is chosen as D =
D(l) ∈ D0, where l is selected u.a.r. from [L], then the

conditional mutual information between Y and l, given

i, is bounded as

I(Y; l|i) ≤ η (16)

with some given small η.

The following result gives precise conditions on the car-

dinality L and threshold η such that at least one subset D0 ⊆
X (D0, r) of size L satisfying (15) as well as (16) is guaran-

teed to exist.

Lemma 4.1. Consider a dictionary learning problem based

on (5) with some r ≤ 1/
√
p. Then, for any ε such that

ε < r2/16,

there exists a set D0 ⊆ X (D0, r) of cardinality L = ep/32

such that (15) and (16) are satisfied with η=32εNsSNR/p.

The next result, which is the central argument of the

information-theoretic method for lower bounding minimax

risk, relates the cardinalityL of a subset D0 ⊆ D to the condi-

tional mutual information I(Y; l|i) between the observation

Y and a random index l selecting the generating dictionary

u.a.r. from D0.

Lemma 4.2. Consider the dictionary learning problem (1)

with minimax risk ε ((10)) and a finite set D0 ⊆ X (D0, r)
consisting of L distinct dictionaries D(l) ∈ R

m×p such that

‖D(l) −D(l′)‖2F ≥ 8δ̄l,l′ε.

Then, it holds I(Y; l|i) ≥ (1/2) log2(L)− 1.

The proofs of Lemma 4.1 and 4.2 are omitted due to space

limitations.

Proof of Theorem 3.1: According to Lemma 4.1, for any

ε < r2/8, with r ≤ 1/
√
p, there exists a set D0 ⊆ X (D0, r)

of cardinality L = ep/32 satisfying (15) and (16) with η =
32NsSNR2ε/p. Applying Lemma 4.2 to the set D0 yields, in

turn,

32NsSNRε/p ≥ I(Y; l|i) ≥ (1/2) log2(L)− 1

implying

ε ≥ SNR−1

32Ns
p((1/2) log2(L)− 1).

Since

(1/2) log2(L)− 1 ≥ 0.7p/32− 1
(13)

≥ 0.2p/32,

we arrive at (14).

5. NUMERICAL EXPERIMENTS

One of the uses of the lower bound on the minimax risk stated

in Theorem 3.1 is that it allows for an assessment of the per-

formance of practical learning schemes. In this section we

compare the lower bound (14) with the actual MSE of an

(locally) efficient learning scheme D̂ITKM(Y), termed itera-

tive thresholding and K-means (ITKM) algorithm, which has

been proposed recently [22]. We applied the ITKM algo-

rithm with sparsity parameter s̃ = 1, using oracle initializa-

tion and signal normalization1, to a data matrix Y ∈ R
m×N ,

1For background and notation, we refer to [22].
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Fig. 2. MSE curves of the ITKM learning scheme for m = 8.
with m = 8, whose columns are independent realizations of

y according to (1) with s = 2. For the underlying gener-

ating dictionary D we choose the identity matrix I and, in

a second experiment, the concatenation of the identity ma-

trix and the m × m normalized Hadamard matrix Fm
2, i.e.,

D = D2 :=
[
I
√
1/mFm

]
. For both choices for the gen-

erating dictionary we set m = 8 and s = 2. In Fig. 2, we

plot the actual MSE ε(D, D̂ITKM(·)) for varying sample-size

N and different values of the SNR. The bound (14) correctly

predicts the slope 1/N of the curves. However, the absolute

position of the lower bound (14) is significantly below that

of the actual MSE curves. While this could mean that the

performance of ITKM is far from optimum, there is also the

possibility that the lower bound (14) can be tightened (made

higher) considerably by taking also the term I(l; i|Y) in (11)

into account.

6. CONCLUSION

We derived a lower bound on the minimax risk for dictionary

learning, which seems to be the first result of this kind. This

lower bound yields, in turn, a characterization of the required

sample-size, i.e., the sample-complexity, such that accurate

learning schemes, regardless of computational complexity,

may exist. Comparing our results with the sample-complexity

of some popular learning schemes, which are mainly based

on minimizing (2), reveals that there may be other algorithms

requiring significantly fewer observations. Finally, we note

that our lower bound complements the sufficient conditions

on the sample-complexity for dictionary learning derived in

[23].
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