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ABSTRACT

The paper shows that perfect periodic sequences can be de-

veloped and used for the identification of Legendre nonlin-

ear filters, a sub-class of linear-in-the-parameters nonlinear

filters recently introduced in the literature. A periodic se-

quence is perfect for the identification of a nonlinear filter if

all cross-correlations between two different basis functions,

estimated over a period, are zero. Using perfect periodic se-

quences as input signals, the unknown nonlinear system and

its most relevant basis functions can be identified with the

cross-correlation method. The effectiveness and efficiency of

this approach is illustrated with experimental results involv-

ing a real nonlinear system.

Index Terms— Nonlinear system identification, linear-

in-the-parameters nonlinear filters, Legendre nonlinear filters,

perfect periodic sequences, cross-correlation method

1. INTRODUCTION

Legendre nonlinear (LN) filters have been recently introduced

in the literature [1]. They belong to the class of linear-in-

the-parameters (LIP) nonlinear filters, which is characterized

by the property that the filter output depends linearly on the

filter coefficients. The class comprises many popular finite-

memory and infinite-memory nonlinear filters, including the

well known truncated Volterra filters [2]. LN filters share

many of the characteristics of Volterra filters. Indeed, they

are polynomial filters whose basis functions are product of

Legendre polynomials of the input signal samples. They in-

clude a linear term formed by the first order basis functions.

The LN filter basis functions form an algebra that satisfies all

the requirements of the Stone-Weierstrass approximation the-

orem [3]. Consequently, these filters can arbitrarily well ap-

proximate any causal, time invariant, finite-memory, continu-

ous, nonlinear system, as well as the Volterra filters. More-

over, LN filters present further interesting properties origi-

nated by the orthogonality of Legendre polynomials. Specif-

ically, the basis functions are mutually orthogonal for white

uniform input signals in [−1,+1]. This property is particu-

larly appealing since it allows the derivation of gradient de-
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scent algorithms with fast convergence speed and of efficient

identification algorithms. Since the LN filter basis functions

are orthogonal, the expansion of a nonlinear function using

their basis functions is a generalized Fourier series [4]. Other

LIP nonlinear filters present similar orthogonality properties.

In particular they can be found in even mirror Fourier nonlin-

ear (EMFN) filters. These filters derive from the truncation of

a multidimensional Fourier series expansion of an even mir-

ror periodic repetition of the nonlinear function we want to

approximate. They are based on trigonometric basis functions

that satisfies the requirements of the Stone-Weierstrass theo-

rem and thus, they can also arbitrarily well approximate any

causal, time invariant, finite-memory, continuous, nonlinear

system. In terms of modelling performance, it has been shown

that EMFN filters can often model strong nonlinearities bet-

ter than Volterra filters [5]. However, in contrast to Volterra

and LN filters, EMFN filters do not have a linear term among

the basis functions. Thus, for weak or medium nonlinearities

Volterra and LN filters should be preferred [1].

In [6], it was shown that perfect periodic sequences

(PPSs) can be developed for the efficient identification of

EMFN filters. PPSs have been extensively studied and pro-

posed as inputs for linear system identification [7] and in

this context they have found application in signal process-

ing [8], information theory [9], communications [10], and

acoustics [11]. A periodic sequence is called perfect for a

certain modeling filter if all cross-correlations between two

of its basis functions, estimated over a period, are zero. By

applying a PPS as input signal, it is possible to model an un-

known system exploiting the cross-correlation method, i.e.,

computing the cross-correlation between the basis functions

and the system output. The most relevant basis functions, i.e.,

those that guarantee the most compact representation of the

nonlinear system according to some information criterion,

can also be easily estimated. In [6], the existence of PPSs for

EMFN filters was conjectured from the orthogonality prop-

erty of the basis functions for white uniform input signals

in [−1,+1]. LN filters satisfy the same property and in this

paper we show that PPSs can be developed also for their ef-

ficient identification. The resulting approach based on PPSs

and cross-correlation is one of the most efficient identification

methods for polynomial systems.



The paper is organized as follows. LN filters are reviewed

in Section 2. PPSs for LN filters are introduced in Section 3.

Nonlinear systems identification using PPS is discussed in

Section 4. Experimental results about the construction of

PPSs for LN filters and about the identification of a real non-

linear system are presented in Section 5. Concluding remarks

are given in Section 6.

The following notation is used throughout the paper. In-

tervals are represented with square brackets, R1 is the unit

interval [−1,+1], N+ is the set of positive natural numbers,

δij is the Kronecker delta, < x(n) >L indicates time average

over L successive samples of x(n).

2. LEGENDRE NONLINEAR FILTERS

Differently from [1], in this paper we introduce the LN filters

starting from a normalized set of Legendre polynomials. This

set is obtained by applying the following recursive relation

Li+1(ξ) =
2i+ 1

i+ 1

√
2i+ 3

2i+ 1
xLi(ξ)−

i

i+ 1

√
2i+ 3

2i− 1
Li−1(ξ)

(1)
with L0(ξ) = 1 and L1(ξ) =

√
3ξ. With this choice, Li(ξ) =√

2i+ 1 Legi(ξ), with Legi(ξ) the i-th Legendre polynomial.

The set of polynomials Li(x) is orthogonal in R1, since
∫ +1

−1

Li(x)Lj(x)dx = 2δij , (2)

and can be used to arbitrarily well approximate any continu-

ous function f(ξ) defined in R1.

Let us assume we want to approximate the input-output

relationship of a discrete-time, time-invariant, finite-memory,

causal, continuous, nonlinear system given by

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (3)

where f is a real N -dimensional continuous function and

x(n) belongs to R1. According to [1], a set of basis functions

that satisfy all the requirements of Stone-Weierstrass theorem

and can arbitrarily well approximate (3) is formed by writ-

ing the polynomials Li(ξ) for ξ = x(n), ξ = x(n − 1), . . .,
ξ = x(n−N+1), and by multiplying in any possible manner

the polynomials of different variable, taking care of avoiding

repetitions. The order of each N -dimensional basis function

is then defined as the sum of the orders of the constituent Leg-

endre polynomials. These LN basis functions are orthogonal

and have unit power (i.e., are orthonormal) for white uniform

inputs in R1. Thus, we can easily find an unbiased estimate

for the coefficients of the LN filter approximating (3) using

the cross-correlation method [12]. In fact, the coefficient gl
of the basis function fl(n) is given by

gl = E[fl(n)y(n)], (4)

where the expectation can be estimated using time averages.

The LN basis functions of order 1, 2, 3 are shown in Table

1, while the basis function of order 0 is equal to 1. An LN

filter of order K and memory N is the linear combination of

Table 1. Basis functions of LN nonlinear filters

Order 1:

L1[x(n)], . . . , L1[x(n−N + 1)]

Order 2:

L2[x(n)], . . . , L2[x(n−N + 1)]
L1[x(n)]L1[x(n− 1)], . . . ,

L1[x(n−N + 2)]L1[x(n−N + 1)]
L1[x(n)]L1[x(n− 2)], . . . ,

L1[x(n−N + 3)]L1[x(n−N + 1)],
. . .

L1[x(n)]L1[x(n−N + 1)].

Order 3:

L3[x(n)], . . . , L3[x(n−N + 1)]
L2[x(n)]L1[x(n− 1)], . . . ,

L2[x(n−N + 2)]L1[x(n−N + 1)],
. . .

L2[x(n)]L1[x(n−N + 1)],
L1[x(n)]L2[x(n− 1)], . . . ,

L1[x(n−N + 2)]L2[x(n−N + 1)],
. . .

L1[x(n)]L2[x(n−N + 1)],
L1[x(n]L1[x(n− 1)]L1[x(n− 2)], . . .

. . .

L1[x(n)]L1[x(n−N + 2)]L1[x(n−N + 1)].

NT (K,N) =

(
N +K

N

)
(5)

basis functions and has the same complexity of a Volterra fil-

ter with same order and memory. In what follows, Sf (K,N)
indicates the set of basis functions of order less than or

equal to K and memory N , with cardinality NT (K,N).
Sf,n(K,N) indicates the subset of Sf (K,N) formed by the

basis functions that are function of x(n), which can be proved

to have cardinality NT (K − 1, N). fl(n) indicates the l-th
LN basis function estimated at time n, with l ranging between

1 and the cardinality of the set fl(n) belongs to.

To obtain a reasonable estimate for the coefficients ap-

plying the cross-correlation technique to stochastic inputs a

huge number (millions) of samples is needed [12, page 77].

To overcome this problem, in the next section we introduce

PPSs for LN filters, i.e., periodic sequences that guarantee

the orthogonality of the basis functions on a finite time inter-

val. Using these sequences, it is possible to obtain an exact

estimate of the coefficients of the LN filter applying again (4),

with the expectations replaced by time averages on one or a

few periods of the PPS.

3. PPS FOR LN FILTERS

The development of PPSs for LN filters follows the same ap-

proach of [6].

Let us consider a sequence x0, x1, . . . , xL−1 of period L.

Such a sequence is perfect for an LN filter of order K and



memory N if all cross-correlations between two different ba-

sis functions, estimated over a period, are zero, i.e., if

< fl(n) · fm(n) >L= 0, (6)

for all fl(n) ∈ Sf,n(K,N), fm(n) ∈ Sf (K,N) with

fl(n) 6= fm(n). Together with the conditions in (6) it is

convenient to impose

< fl(n) · fl(n) >L= 1, (7)

for all fl(n) ∈ Sf,n(K,N) and fl(n) 6= 1. The system of

nonlinear equations defined in (6) and (7) is equivalent to the

following simpler system

< fl(n) >L= 0, (8)

for all fl(n) ∈ Sf,n(2K,N). In fact, the product of two basis

functions of order k and h, respectively, can be expanded in

the sum of basis functions of maximum order k+h [13]. Each

basis function in (8) appears in the expansion of at least one

of the products in (6). Moreover, imposing (8), both (6) and

(7) are satisfied. Indeed, if we expand the products in (6),

we find a linear combination of basis functions different from

f1(n) = 1, while if we expand the terms in (7) we find f1(n)
plus a linear combination of other basis functions.

The system in (8) has Q = NT (2K − 1, N) equations in

the L variables x0, x1, . . ., xL−1. For sufficiently large L, it is

an under-determined system of nonlinear equations that may

have infinite solutions. In our experiments, it has always been

possible to find a solution for it. For this purpose, any algo-

rithm for solving nonlinear equation systems can be used. We

found particularly effective the Newton-Raphson method, im-

plemented as described in [14, ch. 9.7], with the only modifi-

cation of reflecting the variables x0, x1, . . . , xL−1 in R1 when

they exceeded the range. In our simulation, the iterations

started from a random distribution of x0, x1, . . . , xL−1 in R1

and the Jacobian matrix was computed analytically. Employ-

ing numerical methods, only an approximate solution can be

obtained. Nevertheless, the cross-correlations between basis

functions can be made as small as desired, selecting an appro-

priate precision in the stop-condition of the Newton-Raphson

method. The number of iterations necessary for the Newton-

Raphson to converge depends on the selected precision and

on the ratio L/Q.

The number of equations Q in (8) increases exponentially

with the order K and geometrically with the memory N . Also

for low orders and memory lengths Q can be unacceptably

large. We can reduce the number of equations and variables

imposing a specific structure to the periodic sequence. For

example, the following conditions allow to almost halve the

number of equations and variables:

1) Symmetry: if the PPS is formed with the terms a1, a2, . . . ,
aM and reversed ones aM , aM−1, . . . , a1, then for any couple

of symmetric basis functions, only one has to be considered.

2) Oddness: if the PPS is formed with the terms a1, a2, . . . , aM
and the negated ones −a1,−a2, . . . ,−aM , then all odd basis

functions have a priori zero average.

3) Oddness-1: if the PPS is formed with the terms a1, a2, . . . ,
aM and those obtained by alternatively negating one every

two terms, a1,−a2, a3,−a4, . . . ,−aM , then all Odd-1 func-

tions have a priori zero average.

We define Odd-1 all those basis functions that change their

sign by alternatively negating one every two sample, e.g.,

L1[x(n)]L1[x(n− 1)].
Similarly it is possible to impose a priori a zero average

of Odd-2, Odd-4, . . ., functions by alternatively negating two

every four samples, four every eight samples, and so on. Two

or more conditions can also be considered together. The re-

duction in the number of equations is paid with a longer pe-

riod of the resulting PPS but it is often determinant to solve

the system in (8). Indeed, the Newton-Raphson algorithm has

memory and processing time requirements that grow with Q3.

The method is effective only for not too large orders K and

memory lengths N . Another strategy to tackle the compu-

tational complexity of the system in (8) for large orders and

memory lengths is to resort to simplified models, as done for

Volterra filters in [15].

4. IDENTIFICATION USING PPS

In this Section we describe how PPSs can be used to identify

a time-invariant, finite-memory, causal, continuous, nonlinear

system. Let us assume that the input-output relationship of the

nonlinear system is expressed as a linear combination of LN

basis functions up to order K and memory of N samples,

y(n) =
∑

l
glfl(n). (9)

Using a PPS input, the coefficients gl can be estimated by

computing the cross-correlation between the output of the

system and each basis function over a period mL, where

m ∈ N
+ and L is the PPS period,

ĝl =< fl(n)y(n) >mL . (10)

When the input-output relationship in (3) is a linear com-

bination of LN basis functions with memory N and maximum

order greater than K, using a PPS for LN filters of order K
and memory N the identification is affected by an error. It

is possible to prove that this error affects mainly the coeffi-

cients of the higher-order basis functions, while, in general, it

has only a marginal influence on the coefficients of the lower-

order basis functions. The identification is also affected when

the input-output relationship of the system to be identified is

a linear combination of LN basis functions with order K but

memory greater than N . In this case, the error affects mainly

the coefficients of basis functions associated with the most

recent samples x(n), x(n− 1), ..., while, in general, the coef-

ficients of basis functions associated with less recent samples

x(n−N +1), x(n−N +2), ... are only marginally affected.

The proofs will be included in a journal paper in preparation.

Since the basis functions are orthogonal on a PPS period,

they can be easily ranked according to the mean square error



Table 2. Results of Newton-Raphson method

Seq. Q M L Iter. Max XC

1 3003 12012 12012 55 8.1 E-16

2 2232 8928 17856 42 9.1 E-16

3 1567 6268 12536 36 6.2 E-16

4 1116 4465 17860 57 3.8 E-16

5 593 2373 18980 48 5.2 E-16

(MSE) they produce, which for the l-th basis function is

δMSEl =< fl(n)y(n) >
2
mL . (11)

To obtain a compact representation for the nonlinear system,

(10) and (11) can be combined with the minimization of an in-

formation criterion. Common criteria, exploited in the exper-

iments of the next Section, are the Akaike’s information cri-

terion (AIC) [16], the Final Prediction Error (FPE) [16], the

Khundrin’s law of iterated logarithm criterion (LILC) [17],

and the Bayesian information criterion (BIC) [18].

5. EXPERIMENTAL RESULTS

The experimental results aim to illustrate the generation of

PPSs and their ability to identify real nonlinear systems.
In the first experiment, we show how the Newton-Raphson

method can solve the system in (8). In particular, we develop

PPSs for an order 3, memory 10 LN filter (i.e., with 286 coef-

ficients), considering as stop condition the maximum absolute

value of the averages of the basis functions over a period to

be less than 10−15. Table 2 summarizes the results obtained

applying the Newton-Raphson method to the full system in

(8) (Seq. 1) and to the reduced systems obtained exploiting

the sequence oddness (Seq. 2), symmetry (Seq. 3), oddness

and oddness-1 (Seq. 4), oddness, oddness-1, and symmetry

(Seq. 5). Table 2 provides the number of equations Q of

the system in (8), the number of independent variables M ,

the period L of the sequence, the number of iterations (Iter.)

necessary for the Newton-Raphson method to converge, and

the maximum cross-correlation (Max XC) between the basis

functions of the resulting sequence. We can notice that by

considering M ≃ 4Q, the Newton-Raphson method con-

verges within 48÷ 57 iterations. In our simulations, we have

found that M ≃ 3Q ÷ 4Q is generally sufficient to obtain

convergence within a reasonable number of iterations (i.e., in

less than 100 iterations). It should be noted that the larger is

the ratio M/Q, the smaller is the number of iterations needed

to the Newton-Raphson method to converge.

In the second experiment, we consider the identification

of an audiophile vacuum tube preamplifier, Behringer Tube

Ultragain Mic 100. With the selected settings, the pream-

plifier introduces, on a sinusoidal input at 1 kHz, a second

and third order harmonic distortion of 8.7% and 4.2%, re-

spectively. The harmonic distortion is defined as the ratio, in

percent, between the magnitude of each harmonic and that of

the fundamental frequency. At 8 kHz sampling frequency, the

Table 3. Results of identification of Behringer MIC100.

Filter Information Selected MSE

Criterion Bases

LN AIC(4) 433 7.49E − 4
FPE 681 7.47E − 4
LILC 356 7.49E − 4
BIC 182 7.52E − 4

Volterra AIC(4) 434 7.49E − 4
FPE 682 7.47E − 4
LILC 357 7.49E − 4
BIC 183 7.52E − 4

EMFN AIC(4) 430 8.85E − 4
FPE 654 8.83E − 4
LILC 351 8.86E − 4
BIC 164 8.89E − 4

system has a memory length lower than 20 samples. Thus,

a PPS for a LN of order 3, memory 20, exploiting oddness,

oddness-1, and symmetry, and with period of L = 357956
samples has been fed to the preamplifier input and the cor-

responding output has been recorded with a notebook. Table

3 shows the number of terms selected by the AIC (with pa-

rameter 4), FPE, LILC, and BIC information criteria, and the

corresponding MSE for (i) the LN filter, estimated on a period

L with the cross-correlation method of (10), (ii) a Volterra fil-

ter and (iii) an EMFN filter, estimated with the method of [19]

on the same data. For a linear filter of memory 20 the MSE

is 1.63E− 3. LN and Volterra filters provide almost identical

results. The basis functions of the LN filter are a linear com-

bination of those of Volterra filter, and viceversa. Thus, both

filters provide the same MSE, and there is only a little differ-

ence in the number of basis functions selected by the informa-

tion criteria. In contrast, the EMFN filter gives slightly worse

results because it lacks a linear term and the preamplifier in

this case introduces a mild nonlinearity. The main advantage

of the proposed method is the remarkable computational effi-

ciency. The method of [19] has been chosen for comparison

purposes since it is one of the most computationally efficient

identification methods for LIP nonlinear systems available in

the literature. Nevertheless, the computational cost of the

method of [19] is of order TBS2 operations, i.e., multipli-

cations and additions, with T the number of samples used for

the identification, B the number of candidate basis functions,

and S the number of selected basis functions. In contrast,

the cross-correlation method has a computational cost of only

TB operations. In our experiment, while the execution of the

cross-correlation required a processing time of few minutes,

the method of [19] requested hours of simulation.

Figure 1 shows the order and the diagonal number of the

first 400 selected basis functions for LN and EMFN filters

(those for the Volterra filter are almost identical to the LN

filter ones). By definition the “diagonal number” of a basis

function is the maximum time difference between the samples

involved in its expression (L[x(n)]L[x(n − 3)] has diagonal
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Fig. 1. Order and diagonal number of the first 400 selected basis functions for (a)-(b) the LN filter, (c)-(d) the EMFN filter.

number 3). We can see that low diagonal numbers are selected

in the first terms. Thus, if a very compact representation is

desired, the system could be modelled with a simplified LN,

EMFN or Volterra filter with maximum diagonal number 5.

6. CONCLUSIONS

It has been shown that periodic sequences that guarantee per-

fect orthogonality of LN filter basis functions on a finite pe-

riod can be developed. Using the cross-correlation approach,

with PPSs as input signals, is one of the most efficient iden-

tification methods for nonlinear systems. A compact repre-

sentation can also be identified by ranking the basis functions

according to the MSE reduction they produce. Experimental

results involving identification of a real nonlinear system tes-

tify the effectiveness of the approach.

Examples of PPSs can be downloaded from

http://www.units.it/ipl/res_PSeqs.htm.
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