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ABSTRACT

In this paper we evaluate four mainstream video encoders:
H.264/MPEG-4 Advanced Video Coding, Google’s VP8,
High Efficiency Video Coding, and Google’s VP9, studying
conventional figures-of-merit such as performance in terms of
encoded frames per second, and encoding efficiency in both
PSNR and bit-rate of the encoded video sequences. Addition-
ally, two platforms equipped with a large number of cores,
representative of current multicore architectures for high-end
servers, and equipped with a wattmeter allow us to assess the
quality of these video encoders in terms of parallel scalability
and energy consumption, which is well-founded given the
significant levels of thread concurrency and the impact of the
power wall in todays’ multicore processors.

Index Terms— Video encoding, high performance com-
puting, energy consumption, multicore processors

1. INTRODUCTION

Video coding is nowadays the key technology spurring a wide
range of applications, most of them built on top of the “old”
H.264/MPEG-4 Advanced Video Coding (AVC) standard [1],
established in 2003 by the Joint Collaborative Team on Video
Coding (JCT-VC). More recently, in 2010, Google Inc. ac-
quired the VP8 codec [2], promoting this video compression
format as a royalty-free alternative to H.264/AVC.

In the past few years, the demand for higher quality and
video resolution has steadily increased, yielding a breathtak-
ing increment of multimedia traffic in general, and digital
video in particular. In this scenario, the JCT-VC and Google
have responded to the urge for higher video compression per-
formance by working on the next generation of video codecs,
which has resulted in the introduction of the High Efficiency
Video Coding (HEVC) standard [3], finalized in January
2013, and the VP9 codec [4], released in June that same year.
Both codecs significantly depart from their predecessors, but

improve the encoding efficiency by introducing new tools or
by improving the existing ones.

Previous comparative analyses of video encoders mainly
focus on execution time and encoding efficiency. However,
the considerable levels of hardware parallelism in current
multicore servers, combined with the support for significant
thread-level concurrency in these architectures, clearly asks
for a detailed evaluation of the parallelism of modern video
encoders. In particular, the number of threads/cores employed
in video encoders in general affects the execution time, but
may also influence the encoding efficiency more subtlety,
as some encoding dependencies can be broken in a parallel
execution. Moreover, energy is now recognized as the crucial
factor that will constrain the design of future computer archi-
tectures [5] and, therefore, this performance metric should be
also taken into account when analyzing video encoders.

This paper assesses the efficiency of recent implemen-
tations of the aforementioned modern video encoders along
four dimensions, namely execution time, encoding efficiency,
parallelism, and energy consumption. Following the trend
towards the integration of large core numbers in current
High Performance Computing (HPC) servers, the analysis
is performed on two platforms, with processors from Intel
and AMD, and representative of current high-end multicore
technology.

The rest of the article is organized as follows. In Sec-
tion 2 we briefly discuss related work and in Section 3 we
concisely review the background in video codecs. The major
contribution of this paper is in Section 4, where we present the
evaluation methodology jointly with the experimental results.
Finally, a number of conclusions are outlined in Section 5.

2. RELATED WORK

There exist some recent work comparing different video
codecs, most of them limited to two video codecs and an
analysis of execution time and encoding efficiency. In 2011,



Feller et al. [6] present an overview of Google’s VP8 codec,
comparing this technology against the H.264/AVC standard.
The VP8 implementation leveraged in their work was in an
early development stage while the H.264/AVC implementa-
tion, on the other hand, corresponded to the highly optimized
x264 implementation [7]. This explains that VP8 was re-
ported to be up to 350% slower and, furthermore, offered
considerable worse encoding efficiency (up to 1.7dB) than
the x264 encoder. Also in 2011, Bankoski et al. [8] presented
an VP8 overview, but in this case the evaluation was made in
terms of decoding speed, using the FFmpeg decoder in libav-
codec [9] with support for VP8 and H.264/AVC decoding.
Their results show that the decoding speed of VP8 is faster,
around 30%, than that of H.264/AVC.

Two more recent comparative analyses between VP8 and
the x264 implementation of H.264/AVC, from 2012, were
presented in [10,11], where a more optimized version of VP8
was used. In these cases, the performance gap between the
VP8 and x264 encoders is reported as considerably more re-
duced, to the point where the encoding speed of both encoders
is shown to be similar. Additionally, in [11] the VP8 encoder
is evaluated against the scalable extension of H.264/AVC
(H.264/SVC).

In 2013, Bankoski et al. [12] presented an overview of the
late VP9 encoder, including a comparison against implemen-
tations of the H.264/AVC and HEVC standards. The results
show that the VP9 encoder attains better coding efficiency
than both the x264 implementation of H.264/AVC and the
reference implementation of HEVC, when using the veryslow
preset and the low delay Main profile configurations, respec-
tively. However, more favorable HEVC encoding efficiency
is expected when using the random access Main profile con-
figuration as shown by Grois et al. in [13].

Compared with our work, only [6] and [10] consider the
use of multiple cores in their studies, with an old Intel Core
2 Duo (only 2 cores) in the former and a quad core Intel i7-
2600k in the latter. However, the authors of [10] employ a rel-
atively “old” version of VP8, significantly less optimized than
that leveraged in our analysis. Furthermore, none of these
past works considers the effect that thread-level concurrency
has on encoding efficiency nor they evaluate the codecs in an
sceneario with a large number of cores, usual in HPC servers.

3. BACKGROUND

Current video encoders employ a hybrid block-based com-
pression technique which is able to eliminate temporal (inter-
prediction) and spatial (intra-prediction) redundancies in
video sequences. Additionally, by means of a transform mod-
ule, the output of the aforementioned predictions is converted
into a different domain and is quantified to remove irrelevant
information. Finally, an entropy encoder is applied to the
quantified data to remove statistical redundancies. Internally,
there is a complete decoder within the encoder since the inter-

prediction is carried out using reconstructed frames which
have been previously encoded. The decoder includes an en-
tropy decoder, inverse quantization and transform, and some
filters to improve the quality of the reconstructed frames.

To conclude this short overview, the block size on which
the predictions are carried out, the concrete kind of predic-
tions performed, the concrete kind of transforms applied to
the predicted data or which filters are used, depend on the
specifications of each video encoder.

4. RESULTS AND COMPARISONS

4.1. Methodology and Setup

In this section we compare four recent video encoders from
the perspective of i) execution time (in encoded frames per
second, or FPS); ii) parallelism (i.e., ability to increase the
FPS rate proportionally to the growth in the number of cores);
iii) encoding efficiency (in terms of both Peak Signal-Noise
Ratio, or PSNR, and bit-rate of the encoded sequences); and
iv) energy consumption (in KJoules).

The target video encoders are the x264 (v0.135.x) [7] im-
plementation of the H.264/AVC standard, the HM (v12.0) [14]
reference code of the HEVC standard, and the VP8 and
VP9 (v1.2.0-4256) implementations derived from the master
branch of the WebM project [15]. We can expect that the
x265 project [16] will provide a fully optimized implemen-
tation of the HEVC standard in the near future (as was done
with x264). Unfortunately, at present the x265 encoder does
not fully implement all the new mechanisms/tools defined by
the HEVC standard, so we decided to evaluate instead the
HM encoder. Note that the HM encoder does not include any
code optimizations (other than those applied automatically by
the compiler), because its purpose is to serve as a reference
HEVC encoder. The VP9 encoder is in an early development
stage and, like the HM, it is not optimized for speed.

Setting the ground for a fair comparison of codecs is a del-
icate task. To deal with this difficulty, the experiments were
conducted following common test conditions and software
reference configurations recommended by the JCT-VC [17].
Concretely, for each video sequence (see the complete list in
the first column of Table 1), the Rate Distortion (RD) curves
were built using four points, and the comparisons were made
using these execution points. For that purpose, the HM en-
coder was run to encode the five B class sequences (1080p
format) using four quantization parameters (namely, QP=22,
27, 32 and 37) for a total of 20 experiments. The other en-
coders were run in 2-pass mode to achieve a PSNR as high
as possible for the bit-rate delivered by the HM encoder for
each QP value for each sequence. The HM encoding param-
eters used for the evaluation were those included in the main
profile (random access configuration) of the mentioned refer-
ence software. The x264 encoder was run using the –preset
veryslow configuration and the –tune psnr option, in order to
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Fig. 1. Execution time (top) and energy consumption (bottom) of the video codecs on the Intel (left) and AMD (right) servers.

maximize the PSNR results. Finally, the VP8 and VP9 en-
coders were run using the 2-Pass Faster VBR Encoding con-
figuration, which is available in the webM website [15], ex-
cept that the –cpu-used parameter was set to 0, and the option
–tune=psnr was used to maximize the PSNR results. Ad-
ditionally, the encoders with multithread support (x264 and
VP8) were tested for any number of CPU cores, from 1 to the
maximum available in the target platform.

The evaluation was carried out on two servers, equipped
with Intel and AMD multicore technology. The Intel platform
is composed of four Intel Xeon E5-2620 processors (with 6
cores each), running at 2.00 GHz, and 32 GB of DDR3 mem-
ory. The AMD platform comprises two AMD Opteron 6172
processors (with 12 cores each), at 2.10 GHz, with 248 GB of
DDR3 memory. The power dissipation was measured using
an APC 8653 PDU (Power Distribution Unit) which samples
power once per second. This device is directly attached to the
cable that connects the electric socket to the computer power
supply unit. A daemon application ran on a separate tracing
server, collecting power samples from the PDU. The samples
were then averaged and the result multiplied by the execution
time to obtain the energy consumption.

4.2. Experimental results

Let us consider the results in Figure 1. Each point in all four
graphs there correspond to the average value of the 20 exper-
iments for a concrete number of threads. The top two plots
report the FPS delivered by the four encoders executed on
both testing platforms, showing that the FPS rates attained by
HM and VP9 are two orders of magnitude below those for
x264 and VP8. This was actually expected, as the HM and
VP9 implementations are not optimized for speed and, fur-
thermore, currently they offer no support for multithreaded
encoding. More interestingly, this experiment illustrates that
the VP9 encoder is superior to the HM encoder, and the x264
encoder is faster than the VP8 encoder when more than 7–10
threads are employed, depending on the server.

Before analyzing the encoder’s parallelism, we note that
x264 leverages frame-level parallelism, while vp8 applies a
strategy in which rows of macroblocks are simultaneously en-
coded by different threads. However, the vp8 entropy encod-
ing module supports up to 8 token partitions, each of them
executed by a different thread, restricting the parallelism of
this solution. The experiment reveals that little or no bene-
fit is gained from using more than 8–10 threads for the VP8
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Fig. 2. PSNR vs bit-rate for the BQTerrace sequence.

codec, as the FPS rate does not increase or it can even de-
crease from there (e.g., in the Intel server). This may explain
why, if VP8 is configured to launch more than 15 threads,
internally the encoder only spawns 15. On the other hand,
the x264 codec delivers a steady performance improvement
as the number of cores is increased, demonstrating higher par-
allelism than VP8.

The bottom row in Figure 1 reports the energy consump-
tion of the encoders. The first aspect to note is the high energy
figures for the HM and VP9 encoders, two orders of mag-
nitude superior to those reported for x264 and VP8, which
is due to the linear dependence between the energy usage
and the execution time. Focusing the analysis on the multi-
threaded VP8 encoder, we can observe an increase of energy
when more than 8–10 cores are employed, mostly explained
by the null effect or even the increase in the execution time
for these configurations. For the x264 codec, there are impor-
tant energy savings to be gained by using up to 14 threads.
However, the reduction of execution time as the number of
threads grows from there is canceled by the increase in power
dissipation, resulting in a negligible effect on the energy effi-
ciency.

Due to space limitations, Figure 2 only includes the RD
results for two concrete experiments, in particular those corre-
sponding to the BQTerrace sequence encoded with the lowest
and highest QP values in HM. The graphs mainly show that
achieving the target bit-rate is not an easy task. Also, the use
of multiple threads exerts a considerable effect on the RD re-
sults for VP8, but the impact is minor for x264. Specifically,
when the number of threads is raised from 1 to 24, (indepen-
dently of the platform,) the quality may decrease by up to
1.4 dB for VP8 and only by 0.1 dB for x264. This behav-
ior is due to the specific strategy that each encoder applies to
exploit concurrency, discussed previously.

Table 1 reports the RD performance in terms of the
Bjøntegaard Delta Rate metric (BDRate) [17] with all the
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codecs executed using a single thread. In these results, the
VP8 RD curves are set as the reference, since this encoder
offers the worst encoding efficiency (see Figure 3). The RD
values for the remaining curves are normalized to this refer-
ence. Although the x264 encoder improves the RD results
of the VP8 encoder in all cases, the HM and VP9 encoders
provide even higher performance, depending on the video
content. This behavior is further detailed in Figure 3. Specif-
ically, when high bit-rates are required to encode a sequence
the VP9 encoder renders more favorable PSNR values. On
the other hand, when low bit-rates are necessary the HM
encoder delivers superior PSNR values.

5. CONCLUSIONS

We have presented a detailed comparison of four encoders
that represent the state-of-the-art for video compression, from
the points of view of execution time, parallelism, energy con-
sumption, and encoding efficiency, on two top-of-the-shelf
HPC multicore servers.



x264 HM VP9
Sequence Y (%) U (%) V (%) Y (%) U (%) V (%) Y (%) U (%) V (%)
BasketballDrive -12.6 -17.4 -17.0 -51.4 -55.9 -54.2 -39.6 -47.7 -44.5
BQTerrace -24.4 -12.3 -12.1 -48.1 -32.2 -33.7 -50.1 -45.0 -45.9
Cactus -19.4 -19.7 -1.5 -36.1 -34.5 -27.8 -35.2 -37.5 -31.2
Kimono -20.4 -23.0 -12.2 -50.6 -46.2 -43.1 -39.2 -29.9 -26.8
ParkScene -27.0 -22.3 -22.9 -42.0 -46.2 -44.6 -28.7 -25.8 -26.0
Average -20.8 -14.0 -13.2 -45.6 -43.0 -40.7 -38.6 -37.2 -34.9

Table 1. BDRate for class B sequences normalized with respect to VP8.

The main conclusion that can be extracted from this study
is that the “best” enconder strongly depends on the dimen-
sion (metric) of interest. Specifically, in terms of execution
time (i.e., FPS), if the target is a conventional server equipped
with 4–8 cores, the VP8 encoder offers the fastest technology.
However, the most parallel codec is x264 which, in conse-
quence, turns this solution into the fastest one when the num-
ber of cores is considerably large. The linear dependence be-
tween execution time and energy renders similar conclusions
for the energy efficiency. In general, a decrease of execu-
tion time brings along an improvement in energy consump-
tion, except when a large number of cores is employed for
the x264 encoder, where we observed no effect on the energy.
Finally, the recent VP9 and HM encoders are not optimized
for performance, but these standards provide the best coding
efficiency by a wide margin over x264, which in turn clearly
outperforms VP8.
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