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ABSTRACT

This paper presents a methodology for estimation and modeling of
the glottal source and vocal-tract information. The strategy pro-
poses a simplified framework based on the characteristics of statio-
nary singing following a selection of glottal pulse model candidates
driven by a single shape parameter. True-Envelope based models
are applied, allowing efficient modeling of the observed filter in-
formation and accurate cancellation of the glottal source contribu-
tion in the spectrum. According to experimental studies on synthetic
and real signals the methodology observes adequate approximation
of the source and filter information, leading to natural resynthesis
quality using synthetic glottal excitation. The proposed estimation
framework represents a promising technique for voice transforma-
tion on stationary modal voice.

Index Terms— Speech analysis, speech synthesis, glottal
source estimation, vocal-tract estimation

1. INTRODUCTION

Voice transformation represents a number of techniques allowing us
to modify the perceived characteristics of the voice. A fundamental
task is found in the manipulation of the excitation and filter charac-
teristics according to the model of the speech production system. A
robust decomposition of these elements represents a major challenge
due to the limited information available to perform simultaneous es-
timation, and to potential non-linear interactions not considered in
the inverse filtering process.

Some works propose iterative and deterministic methods for
voice decomposition such as [1] and [2] respectively. Recent strate-
gies ( [3], [4], [5]) use the transformed Liljencrants-Fant (LF) glottal
flow model [6] in the analysis framework. In particular, [4] and [5]
propose an approximation of the glottal contribution by exhaustive
search among LF-model candidates. Previously, LF modeling was
considered in methods based on the estimation of a joint source-filter
system, refered to as ARX-LF [7], [8].

We aim to manipulate the modal, stationary, monophonic
singing voice samples used as corpora of the concatenative singing
synthesizer VOCALOID [9]. These corpora are recorded following
flat and stable characteristics (e.g. loudness, vocal effort, pitch),
suggesting to focus the analysis of the excitation characteristics on a
reduced acoustic context and to consider an approximation of both
glottal and vocal-tract contributions at each speech epoch based on
the information of the previous one. Using approximate information
of the glottal source might not lead to perceived differences after a
resynthesis process, as it can be extrapolated from works as [10].

We remark that continuous speech and expressive singing (inclu-
ding non-modal voice) do not observe, in general, the same acoustic
characteristics and should be furthermore studied.

Our motivation is to derive a simplified source-filter estimation
framework by reducing the glottal model search and optimization
schemas of [4] and [5]. In addition, we consider True-Envelope (TE)
based models seeking efficient modeling of the spectral information
of both source and filter contributions. The glottal source estimation
strategy was introduced in previous work [11]. This paper presents
an extensive study including the estimation of the filter contribution
and an evaluation on both synthetic and real data.

The paper is structured as follows. In section 2 the various tech-
niques are described. Section 3 presents the proposed estimation
strategy. The different matching functions for glottal model selec-
tion are described in section 4. The experiments on synthetic and
real signals are presented in section 5. The paper ends at section 6
with conclusions.

2. TECHNIQUES

2.1. Glottal shape parameter (Rd) based source modeling

The glottal flow, which in a source-filter basis represents the main ex-
citation contribution of voiced speech, is typically represented by its
differentiated version, also called derivative glottal waveform. The
LF model allows an approximation of this waveform in terms of four
parameters (tp, te, ta, Ee) specifying its main time-domain charac-
teristics. Furthermore, a set of R parameters Ra, Rg, Rk were de-
rived based on observed correlations between tp, te, and ta. Finally,
an analysis on the progression of the R parameters ranging over ex-
treme phonations (e.g. from adducted to abducted voice) leads to a
single-parameter Rd [6], denoting a progression of the main glottal-
pulse shape properties, as shown in Fig.1.

The Rd parameter shows in 0.3 < Rd < 2.7 its main range
of variation. Three main voice qualities are typically distinguished
along this range: pressed, modal (or normal) and breathy. In [12],
0.84, 1.19 and 2.9 respectively were found as average values for
these voice qualities on baritone sung vowels. Accordingly, Rd esti-
mates on modal stationary phonations might be expected around the
corresponding value, while showing a smooth variation over time.

2.2. True-Envelope estimation for efficient spectral modeling

A fundamental aspect of our strategy relies on a precise spectral fea-
tures extraction. This is achieved using accurate spectral envelope
information. TE estimation provides efficient fitting of the spectral
envelope based on an iterative cepstral smoothing of the amplitude
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Fig. 1. LF-based derivative glottal pulse for different Rd values.

spectrum [13]. Thus, similarly to [4], we use True-Envelope (TE)
based models for both features-modeling and inverse filtering pur-
poses.

TE is used at the glottal source spectra cancellation step in a si-
milar way as in [4], as explained in the next section. However, we
keep a physical motivation by using all-pole modeling for the VTF
fitting. Note that although Linear-Prediction (LP) is the common
solution for this task it shows poor matching of the spectral peaks
due to the biasing effect caused by harmonics [14]. This may distort
the observed vocal-tract information and the glottal excitation after
inverse filtering. Issues related to envelope fitting were already a-
ddressed in previous work [8]. We therefore use the True-Envelope
based all-pole modeling presented in [15], that we refer here as the
TEAP model. This technique uses the envelope estimations obtained
from TE as a target spectrum for the autocorrelation matching crite-
ria of an autoregressive filter. Basically, it follows the strategy intro-
duced in [16] using interpolated spectrum information for all-pole
modeling.

The cepstral order of the True-Envelope, 0TE , can be set accor-
ding to the fundamental frequency such as 0TE = FS/(2f0) for
optimal fitting [17] (FS denotes the samplerate). This value, when
applied as the order of the all-pole system provides generally ma-
ximal precision. A comparison between LP and TEAP fitting of a
spectrum featuring the observed VTF information is shown in Fig.2.

2.3. Vocal tract filter derivation and inverse filtering

In our processing framework the signal is windowed pitch-synchronous
in a narrow-band basis (4 speech epochs) centered at the Glo-
ttal Closure Instants (GCI). In detail, sk will denote the k − th
frame from signal s(n) centered at gcik (sk = s(n) for n =
[gci(k−2), gci(k+2)]). Both derivative glottal flow and VTF infor-
mation are extracted from each sk, as described in this section.

To derive the VTF information, in contrast with [3], the glottal
source contribution is not cancelled by pre-emphasis filtering. Loo-
king for higher precision we proceed in a similar way as in [4], given
a LF model ǧ of the derivative glottal waveform for sk we compute
its spectral representation in the form:

Eǧ = TE(20 log10 |Ǧ|), (1)
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Fig. 2. Example of VTF fitting using Linear Prediction (LP) and
TEAP modeling (same order used in both systems).

where Ǧ denotes the DFT of ǧ and TE(·) the operator representing
the True-Envelope estimator. Next, the glottal contribution is can-
celled on Sk (DFT of sk) using the linear representation as follows:

Sv =
Sk

10(Eǧ/20)
, (2)

with Sv denoting the DFT of the vocal-tract related spectrum. Fi-
nally, the VTF is computed in terms of the TEAP estimator:

V = TEap(20 log10 |Sv|). (3)

Conversely, given a system V , the derivative glottal waveform g can
be extracted from sk by inverse filtering:

g = V −1 ∗ sk. (4)

3. ITERATIVE SOURCE-FILTER EXTRACTION
STRATEGY

3.1. Conditions for analysis: stationary modal voice

The motivation of the proposed glottal and vocal tract estimation
strategy relies on the assumption of three fundamental conditions
with regards to the modal singing signals of interest:

• Modal vocal effort: The main glottal shape characteristics can be
sufficiently approximated by LF-modeling near reported modal
Rd parameter values.

• Stationarity: the source and filter characteristics vary smoothly.
An evolution of the glottal shape between epochs does not re-
present a difference larger than an assumed ∆Rd.

• Voicing: the level of turbulence or aspiration noise is low enough
to neglect a masking of significant VTF features after cancella-
tion of the glottal contribution on the spectrum.

Although these three conditions may not be fulfilled following
the particular characteristics of an individual voice they are commnly
observed among modal singing, in particular, in the corpora of inte-
rest described in the introductory section.
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Fig. 3. Example of Rd parameter estimation on a synthetic signal
using all matching measures (top). Example of estimation on a real
signal before and after smoothing (bottom).

3.2. Estimation framework

The analysis framework is based on the assumption that the vocal-
tract configuration does not change between sucessive epochs. A-
ccordingly, at each sk, the derivative glottal extraction g is obtained
by inverse filtering using V(k−1) (the estimation of V at frame k−1)
according to Eq.4. Then, a representative LF model is selected from
the ǧc candidates derived from the set of Rd values:

RdC = [Rdk−1 −∆Rd, Rdk−1, Rdk−1 + ∆Rd]. (5)

The selection is done after matching the candidates with g in terms
of any of the measures described in the following sections. Note
that Rdk−1 corresponds to the value selected for s(k−1) and that
∆Rd is set heuristically according to the expected maximal de-
viation of the glottal shape between epochs. Values in the range
of ∆Rd = [2.5%, 10%] of Rdk−1 observed adequate results on
stationary singing after performing resynthesis using the estimated
Rd values to generate the synthetic glottal flow.

The VTF information of sk, noted Vk, is updated using the se-
lected ǧc according to Eq.2 and Eq.3. The procedure is repeated for
the succesive epochs. A slight modification is considered for ini-
tialization: firstly, the number of candidates in RdC is increased
to explore a larger range within an assumed modal interval (e.g.
RdC = [0.6, 1.3]). Following, g and V are extracted for each gc
applying Eq.2, Eq.3, and Eq.4 straightforwardly. The initial con-
ditions Rdk=1 and Vk=1 are then chosen according to the closest
glottal waveform match. Although this initialization criterion lacks
an optimization step for V it was shown to converge near the actual
source and filter conditions in experiments with synthetic signals.

4. GLOTTAL WAVEFORM MATCHING

The modeling of the derivative glottal source is performed by selec-
ting a LF model ǧc of the set described by Eq.5. The selection
follows the minimum error between the candidates and g, the ex-
citation extracted from sk after inverse filtering using V(k−1). To
complement the study presented in [11] we evaluate the same error
measures, described in the following subsections.
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Fig. 4. Performance of Rd and VTF estimation on synthetic data as
a function of the matching band (number of harmonics I).

4.1. Mean Square Phase matching (MSP)

This refers to a residual-phase flatness measure inspired by [4] and
considered as indicative of the matching between original and syn-
thetic waveforms. A synthetic version of sk denoted by s′c is ob-
tained for each candidate ǧc given V . The MSP error computation
is described as follows:

s′c = V ∗ ǧc, (6)

Rc = Sk/S
′
c, (7)

emsp,c =
1

I

I∑
i=1

( 6 Rc,p(i))
2, (8)

where S′c denotes the DFT of s′c and p(i) is the bin index in Rc

closest to the i − th harmonic. Note that I is the total number of
harmonics considered for matching, suggested in [4] to be found in
the range [2, 4].

4.2. Joint harmonic and time-domain matching (SpecTime)

A similarity measure between glottal waveforms based on spectral
and time-domain information is proposed in [5]. The spectral part
corresponds to:

es = {0.5− |cor(log |Gp(i)|, log |Ǧc,p(i)|)|} · ws, (9)

where G and Ǧc represent the DFT versions of g and ǧc respectively,
and p(i) the harmonic bins as previously described. The operator
cor(·) represents the Pearson correlation between the harmonic am-
plitudes. The time-domain part is derived similarly:

et = {0.5− |cor(g, ǧc)|} · wt. (10)

Following [5] the weights ws and wt are set to 0.6 and 1 respec-
tively. Finally, the total matching error est,c corresponds to

est,c = es + et. (11)



4.3. Normalized low-band envelope matching (NLBE)

A novel measure based on the differences between the spectral en-
velopes Eg and Eǧc (obtained from g and ǧc respectively) was in-
troduced in [11]. The MSE is computed after normalization of the
average energy as follows:

enlbe,c =
1

L

I·f0∑
f=f0

(Egf − [Eǧc,f + Gg])2, (12)

where f0 denotes the fundamental frequency and I · f0 the mat-
ching cut-off frequency, limited by I as in the previous measures.
L denotes the number of bins covering the matching band. The term
Gg denotes the energy bias between the envelopes computed as:

Gg =
1

L

I·f0∑
f=f0

[Egf − Eǧc,f ]. (13)

Note that Gg corresponds to an estimation (in dB) of the LF
gain parameter Ee for ǧc, computed as

Ěec = 10(Gg/20). (14)

This is an alternative to an approximation based on the minima of g,
as applied in [4], [5], and [3].

For comparison purposes, the DFT size was fixed to the length
of sk for all analysis. Note that the va-lues observed at the p(i) po-
sitions may not accurately represent the actual harmonic-peak am-
plitudes, limiting, eventually, the precision of MSP and SpecTime
measures.

Figure. 3 (top) shows an example of the results for the estima-
tion of Rd on a synthetic signal by the different matching functions,
an optimal selection according to ∆Rd and the actual value. All
measures lead closely to the real values. The noisy nature of the
estimations may result in perceived degradations after resynthesis.
This is alleviated by applying simple mean filter smoothing. An e-
xample of this process is shown in the same figure (bottom) with
the result of the estimation on a real sustained sung vowel. These e-
xamples correspond to the corpora used in our objetive and subjec-
tive evaluation, described in the following section.

5. EXPERIMENTS

We firstly carried out an objective evaluation on synthetic data due to
the impossibility of accessing the actual source and filter information
in real signals if only the acoustic signal is available.

5.1. Synthetic data

To build a synthetic corpus, representative VTFs were extracted af-
ter manual setting of the LF model parameters to cancel the source
contribution in the spectrum. A VTF was computed over a selected
segment of sustained sung vowels recorded individually in studio
(samplerate: Fs = 44100Hz). The samples correspond to the five
vowels of Japanese sung by 10 singers (four males, six females),
resulting in fifty different VTFs.

These VTFs were used to synthesize short samples (1 second
length) keeping the VTF unchanged in the synthesis filter. To ge-
nerate the excitation sequence, a sinusoidal modulation (one cycle)
was applied to the LF parameters (Rd, Ee, and the fundamental
period t0) seeking to reproduce a smooth variation of the glottal cha-
racteristics on the excitation. The average f0 was set according to the
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Fig. 5. Performance of the glottal source estimations with all mat-
ching measures accross the different singers and vowels.

original sample used for VTF extraction with a modulation of 2.5%
over time. The mean Rd value was fixed to 1 with a modulation (o-
pposite to f0) of 30% to cover a resonable interval near the assumed
modal range. Finally, the gain value Ee was set arbitrarily to 1 and
modified according to Rd following the correlations reported in [6].

The synthesis framework is based on the PSOLA technique [18]
with a slight modification: zero padding of size 2t0 is applied to the
derivative glottal signal to perform source-filter synthesis. The pur-
pose of this is to include, to some extent, the damping characteristics
of the synthesized voice epochs. The synthesis linear filter is set a-
ccording to the autoregressive systems defined by the corresponding
Vk. The synthetized waveforms are allocated in order to properly
match the synthesis GCIs without applying any additional windo-
wing in the overlap-add process. This strategy was found to provide
natural resynthesis quality.

5.2. Objective evaluation on synthetic data

We evaluate both Rd and VTF estimation performance over the syn-
thetic set. An evaluation is done, firstly, in terms of the matching
cut-off frequency (number of harmonics I). Then, the number of
harmonics was fixed and we looked into the different VTF cases
(singers and vowels). For analysis, ∆Rd is fixed to±5% of the pre-
vious selected value and the actual GCI positions were kept. The Rd
estimation performance was quantified by the normalized MSE be-
tween the actual and selected Rd values for all measures. The spec-
tral distortion error between the original and the estimated VTFs was
used as performance measure of the VTF estimation.

The results are shown in Fig.4 including, for comparsion, the
case of optimal Rd selection (the closest to the actual value given
∆Rd). SpecTime shows the best scores for Rd estimation and no
dependency on the matching band. NLBE improves with increa-
sing number of harmonics, showing slightly lower performance than
SpecTime. MSP shows bigger overall errors, increasing with the size
of the matching band. Similar trends are observed regarding the VTF
estimation (bottom). Given the small overall error values (∼ ±15%
for Rd, ∼ 1dB for VTF), the performance can be considered as
adequate for source and filter approximation purposes.

Fig.5 shows the results per singer (top) and vowel (bottom) for



Rd estimation. The singers are ordered for increasing f0 and labeled
with M (male) or F (female). The error has no significant depen-
dency on f0. However, the performance is relatively degraded for
the vowel [i:]. This is commonly attributed to the proximity of the
first formant to the fundamental component (f0).

5.3. Subjective evaluation on real data

Finally, experiments were conducted on real signals in order to
study the perceived quality after source-filter resynthesis. The de-
composition was applied to the five vowels of one of the singers
of the corpora previously described. For simplicity, the estimates
given by SpecTime were considered for evaluation according to
the results of the objective evaluation. Three resynthesis cases: a)
PSOLA (no source-filter resynthesis nor time-scale modification),
b) source-filter resynthesis with estimated features and c) same
as b) with smoothed parameters, were compared with the original
recorded samples. A group of 20 professionals in audio were asked
to evaluate the perceived quality in terms of the MOS scale (1=
very degradated, 2=degradated, 3=degradations present, 4=slightly
degradated, 5=clean). The purpose of including transparent PSOLA
resynthesis is to discriminate degradations mainly due to distorted
GCI estimates, computed with a strategy based on [19].

The results are shown in the table below (the standard deviation
is included). Surprinsingly, the original excerpts were not always
considered as fully natural/clean. A reason of this may be found
in the difficulty to perceptually evaluate the naturalness of sustained
voice in a short duration context.

Type Original PSOLA Estimated Smoothed
MOS 4.3±0.8 3.6±0.7 2.7±0.7 3.6±0.8

As expected, resynthesis with non-smoothed features shows the
lowest scores. This is mainly due to degradations coming from
jumps in the glottal model parameters between epochs. The scores
obtained from resynthesized signals using smoothed parameters are
similar to those of PSOLA synthesis, showing the convience of the
simple smoothing strategy to avoid perceived degradations. This
allow us to claim comparable resynthesis naturalness after follo-
wing the proposed glottal excitation and vocal-tract filter estimation
methodology.

6. CONCLUSIONS

We presented in this work a simplified strategy for source-filter esti-
mation based on glottal-shape parameter modeling. The results of
experimental studies on synthetic and real signals show adequate
performance of the proposed methodology, showing natural resyn-
thesis quality after simple optimization of the estimated parameters.
Three different measures of the derivative glottal waveform simila-
rity were compared, showing best results from the time and harmonic
information based method (SpecTime).

Further investigation into latest improvements of the MSP mea-
sure and efficient subjective evaluation of sustained singing voice
should be conducted. Informal experimentation showed promising
results for Voice Transformation purposes. The definition of a whole
transformation framework is currently under study by the author.
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