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ABSTRACT
In this work, we extend recent results on the Cramér-Rao lower
bound for multidimensional non-uniformly sampled Nuclear
Magnetic Resonance (NMR) signals. The used signal model
is more general than earlier models, allowing for the typically
present variance differences between the direct and the dif-
ferent indirect sampling dimensions. The presented bound is
verified with earlier presented 1-and R-dimensional bounds
as well as with the obtainable estimation accuracy using the
statistically efficient non-linear least squares estimator. Finally,
the usability of the presented bound is illustrated as a mea-
sure of the obtainable accuracy using three different sampling
schemes for a real 15N-HSQC NMR experiment.

Index Terms— NMR spectroscopy, Cramér-Rao lower
bound, Non-uniform sampling

1. INTRODUCTION

In the last decade, powerful methods in Nuclear Magnetic
Resonance (NMR) spectroscopy have been developed to study
protein dynamics involved in increasingly complex biological
phenomena [1–4]. Dynamic parameters, such as correlation
times and amplitudes of motion, are determined by model
fitting against sets of relaxation rates of specified NMR coher-
ences. With the advent of modern spectrometers, a sufficient
signal-to-noise ratio (SNR) is often reached before all evolu-
tion dimensions have been explored [5], although, regrettably,
these measurements rely on very time-consuming experimen-
tal acquisition schemes, which are deemed necessary to obtain
robust estimates of the relaxation rates, but also limit the appli-
cations to particularly stable biomolecular systems. Traditional
NMR spectroscopy samples the signals uniformly, such that
the signal power is measured at regular intervals. However,
recent breakthroughs in compressive sensing and non-uniform
sampling (NUS) have shown that one may achieve the same
spectral resolution with a non-uniformly sampled signal, using
only a fraction of the number of samples required in the uni-
form case (see, e.g., [4,6–8]). This amounts to very significant
time savings, which make it possible to, for example, address
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challenging research questions in the context of living cells or
other sensitive systems. In this work, we derive the Cramér-
Rao lower bound (CRLB) for a signal consisting of a set of
non-uniformly sampled damped multidimensional sinusoidal
signals1, a model that has been found to accurately describe
various forms of NMR signals [9, 10]. The CRLB offers a
helpful tool to a priori evaluate the limitations of different
experimental designs, by allowing a measure of the achievable
accuracy for a particular setting and sampling scheme. The
CRLB has previously been derived for a similar harmonic
models, see e.g. [11–14]. These models, however, are either
restricted to situations of low dimensionality such as 1- or
2-D models [12, 13], contain a limited number of modes [15],
or consider only undamped sinusoids [11, 14]. In particular,
the presented work may be viewed as a generalization of the
results of [12], where the Fisher information matrix (FIM) is
derived for a 2-D dampened sinusoidal model, with a some-
what stronger model structure than presented here, and [14],
where the authors finds an expression for the CRLB of a uni-
formly sampled R-dimensional undamped sinusoidal model.
In order to verify the presented bound, we compare the found
CRLB expression with earlier 1-and R-dimensional bounds,
as well as with the performance of the statistically efficient
non-linear least squares (NLS) estimator. The usability of
the bound is further illustrated by determining the achievable
variance for a measured 2-D NMR signal when using three
different sampling schemes.

2. DATA MODEL

Consider a non-uniformly sampled R-dimensional NMR sig-
nal containing F modes, such that (see e.g. [10, 15])

xm1m2...mR
=

F∑
f=1

cfe
iφf

R∏
r=1

e(γr,f+ωr,f )trmr (1)

where xm1m2...mR
is an entry of the signal tensor, X ∈

CM1×M2×···×MR , with cf , φf , ωr,f ∈ R, and γr,f ∈ R−
denoting the amplitude, phase, frequency, and the damping co-
efficient in the r:th dimension for the f :th mode, respectively.

1An implementation of the herein presented CRLB is publicly available
from http://www.github.com/monopolis/CRLB.

http://www.github.com/monopolis/CRLB
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Fig. 1. The presented CRLB of the frequency parameter f1,
together with the bound presented in [13] and the estimated
MSE of the NLS-estimator. Clearly, the results coincides; the
bounds and accuracy for the other parameters behave similarly.

Without loss of generality, it is assumed that the frequency
vectors ωf = (ω1,f , . . . , ωR,f )T are distinct. Furthermore, let

Y = X + E (2)

where Y denotes the measurement tensor, and E the noise
tensor, where each fiber em2...mR

, i.e., the column vector
formed by varying the first index while keeping the remaining
indices fixed, is assumed to be an additive circularly symmetric
Gaussian white noise, such that em2...mR

∼ CN (0, σ2
m2...mR

),
where CN denotes the complex-valued Gaussian distribution.
It is worth noting that, in accordance with [12], the noise
variance is allowed to vary over the indirect dimensions.

3. THE CRAMÉR-RAO LOWER BOUND

Let L(θ) = ln p(Y | θ) denote the log-likelihood of (1), given
the 2F (R+ 1)-dimensional parameter vector θ, formed from
all the unknown parameters. Let the data setM, with elements
m = (m1, . . . ,mR), define an R-dimensional grid over the
sampling times tm = (t1m1

, . . . , tRmR
)T , and

skp(m) = − 2

σm
exp

{
(γp + γk)T tm

}
(3)

ψkp(m) = cos
{

(ωp − ωk)T tm + φp − φk
}

(4)

ϕkp(m) = sin
{

(ωp − ωk)T tm + φp − φk
}

(5)

where γp = (γ1,p, . . . , γR,p). Then, the elements of the FIM
may be formed as (see, e.g., [16])

[F (θ)]k` = E
{∂2L(θ)

∂θk∂θ`

}
(6)

where [F (θ)]k` denotes the (k, `):th element of F (θ), and

E
{∂2L(θ)

∂ck∂cp

}
=
∑

m∈M
sk,p(m)ψk,p(m)
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Fig. 2. The estimated MSE of the two-dimensional experi-
ment closely follows alongside the computed CRLB for the
parameter f1,1. Clearly, the results coincide; the accuracy for
the other parameters behave similarly.

E
{∂2L(θ)

∂ck∂φp

}
=
∑

m∈M
−cpsk,p(m)ϕk,p(m)

E
{ ∂2L(θ)

∂ck∂γl,p

}
=
∑

m∈M
tlml

cpsk,p(m)ψk,p(m)

E
{ ∂2L(θ)

∂ck∂ωlp

}
=
∑

m∈M
−tlml

cpsk,p(m)ϕk,p(m)

E
{ ∂2L(θ)

∂φk∂φp

}
=
∑

m∈M
ckcpsk,p(m)ψk,p(m)

E
{ ∂2L(θ)

∂φk∂γlp

}
=
∑

m∈M
tlml

ckcpsk,p(m)ϕk,p(m)

E
{ ∂2L(θ)

∂φk∂ωl,p

}
=
∑

m∈M
tlml

ckcpsk,p(m)ψk,p(m)

E
{ ∂2L(θ)

∂γjk∂γl,p

}
=
∑

m∈M
tjmj tlml

ckcpsk,p(m)ψk,p(m)

E
{ ∂2L(θ)

∂γjk∂ωl,p

}
=
∑

m∈M
tjmj

tlml
ckcpsk,p(m)ϕk,p(m)

E
{ ∂2L(θ)

∂ωj,k∂ωl,p

}
=
∑

m∈M
tjmj

tlml
ckcpsk,p(m)ψk,p(m)

It is worth noting that, for all k, p = 1, . . . , F and m ∈ M,
sk,p = sp,k, ϕk,k = 0, ψk,k = 1, ϕk,p = − ϕp,k, and
ψk,p = ψp,k. The CRLB may then be found as the diagonal
elements of the matrix [F (θ)]−1 (see also [17] for further
details).

4. NON-UNIFORM SAMPLING SCHEMES

Various NUS schemes that may be used to improve both the
performance and the acquisition time of NMR experiments
have been examined in the recent literature (see, e.g., [8, 18]).



The goal of such schemes is to reduce the number of sam-
ples needed, while maintaining most of the information (in
a loose sense) of the signal. Reducing the number of sam-
ples yields a speed-up of the experiment acquisition time,
which is critical in many applications, e.g. in the case of
high-dimensional spectra, where the curse of dimensionality
otherwise makes a high-resolution experiment intractable, or
in situations where either sample or instruments imposes time
constraints and thereby indirectly limits the achievable resolu-
tion (see e.g. [8]). Here, we apply the CRLB to evaluate the
performance of three sampling schemes in a high-dimensional
setting, namely uniform sampling, an exponential sampling
scheme suggested in [19], which was evaluated for a two-
dimensional case in [12] through the use of CRLBs, as well
as a sinusoidal-weighted Poisson gapped sampling scheme
proposed in [20]. These methods are tailored especially for
signals containing exponential decay in the time-domain. For
signals with other characteristics, these schemes will need
tweaking in order to work as intended. The sampling scheme
of Schmieder et al. [19] may be expressed as follows: given
a stopping time T , a line-width L, and a sample size J , with
t0 = 0, then

tj+1 = − 1

L
ln

(
exp{−Ltj} −

1− exp{−LT}
J − 1

)
(7)

for j = 1 . . . J − 1. It should be noted that this sampling
scheme will generally generate off-grid samples2. Proceeding
to the Poisson-based scheme, which given a uniform grid
{0, . . . ,M − 1}, may be formed as follows: with t0 = 0,

tj+1 = tj + kj+1 + 1 (8)

for j = 1, . . . J−1, where kj is a random variable drawn from
a Poisson process defined by p(k ; λj) = (λkj e

−λj )/(k!) with
a time-dependent average gap length λj = Λ sin

(
π
2 d

j
J+1e

)
,

where the parameter Λ is tuned so that tJ = M − 1. When
applying these schemes to higher dimensional signals, each
of the indirect dimensions are sampled individually using the
NUS-scheme. The direct dimension is throughout sampled
using a uniform scheme.

5. NUMERICAL RESULTS

We proceed to verify the presented CRLB expression as com-
pared both to earlier presented 1- and R-dimensional bounds
[13, 14], as well as with the mean square error (MSE) of the
statistically efficient NLS estimator. To ensure correct conver-
gence, we here for simplicity initialize the NLS-estimator to
values close to the true parameters by perturbing the values
using a random uniform distribution. The perturbations are
scaled such that each parameter is perturbed at most 0.1% of
its magnitude. Beginning with the 1-D case, Fig. 1 illustrates

2An analog scheme that generates on-grid samples is presented in [21].
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Fig. 3. Comparing the CRLB to the bound presented in [14]
for f1,1 shows a close agreement at small damping coefficients.
With larger damping coefficients, the bounds grow apart. The
bounds and accuracy for the other parameters behave similarly.

the presented bound for the frequency of the first mode as com-
pared to the bound derived in [13] and with the MSE of the
NLS-estimator, evaluated using 1000 Monte Carlo simulations.
Here,

p1 = (c1, γ1, f1, φ1) = (0.9, −0.1, 0.1, 0.11)

p2 = (c2, γ2, f2, φ2) = (0.5, −0.1, 0.2, 0.8)

p3 = (c3, γ3, f3, φ3) = (1.3, −0.3, −0.2, 0.4)

(9)

and

yk =

F∑
j=1

s(pj ; tk) (10)

with s(c, γ, f, φ; tk) = ce(γ+i2πf)tk+iφ, tk = 0, . . . , 127, and
where the SNR is defined as (see also [22])

SNR =
‖X‖2F∏R
r=1Mrσ2

e

(11)

and where ‖ · ‖F denotes the Frobenious norm, and with σ2
e

being the variance of the noise tensor. Clearly, the results coin-
cides; the bounds and accuracy for the other parameters behave
similarly. In the second and third experiment, we amend ad-
ditional damping/frequency dimensions to the parameter con-
figuration of (9) with the specifics of the experiments detailed
in [17]. A 2-D signal is created analogously to (10) and is eval-
uated over the rectangular grid {0, . . . , 127} × {0, . . . , 31}.
Fig. 2 shows the presented bound for the frequency of the first
mode in the 2-D case as compared with the estimated MSE,
which clearly follows the bound closely. Again, the bound and
accuracy for the other parameters behave similarly. Thirdly, we
compare the presented CRLB with the bound derived in [14]
for an undamped multidimensional sinusoidal model. The ex-
periment is performed by scaling the dampening coefficients
of the original experiment (extended to three dimensions). In
Fig 3, we find that for a low dampening (γr,f ∼ 10−3), the



two bounds are in almost complete agreement. As the dampen-
ing magnitude increases (γr,f ∼ 10−1), the two bounds grow
further apart. It should be pointed out that, since our model
contains a larger number of parameters it will invariably have
a larger CRLB. The magnitude of the difference can, how-
ever, as shown, be small in comparison to the actual values
of the CRLBs. Finally, using a measured NMR signal from a
15N-HSQC experiment of a Histidine sample, with pH 11.14
(25◦C), acquired at 600 MHz, we examine the achievable per-
formance of the aforementioned sampling schemes. The data
set consists of 1024 × 512 samples distributed on a uniform
grid. From the measured signal, the 12 most dominant modes
are estimated using the sparse estimation algorithm presented
in [23]. In order to maintain a correct SNR for the signal gen-
erated from the estimates, the amplitudes of the chosen modes
are scaled such that the periodogram of the estimated signal
is close to the periodogram of the original signal. The correct
noise level is subsequently chosen such that noise floor of the
two periodgrams are close to identical (see also [17] for further
details). From the estimated parameters, the CRLBs of the
various schemes are then computed. The sampling schemes
are tuned for a 3x speed-up in terms of acquisition time while
covering the same intervals as the original grid. For the ex-
ponential sampling scheme, we chose L = 0.01. It may be
noted, that the herein presented CRLBs should be viewed as
approximative, as the measured signal in fact also contains
additional modes. The results of this experiment are presented
in Table 1, where one finds the estimated damping parameters
and the corresponding 3σ-confidence interval, computed via
the corresponding CRB values. The total number of samples in
all dimensions are for the three sampling schemes 1.048.576,
349.184, and 349.184, respectively. Observing the data, one
finds that it is possible by the usage of a NUS scheme, to
achieve a 3x speed-up at little to no loss in performance. For
the exponential sampling scheme, we note an increase in per-
formance as compared to the uniform sampling scheme. This
is likely due to scheme producing off-grid samples, but also
due to the fact that the scheme samples much sparser at larger
times in the indirect dimension, and thereby maintains a higher
SNR.
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