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ABSTRACT

In this contribution, we numerically investigate if the quasi-

stationary (QS) response is a valid approximation for the

response of antennas excited by wideband linear-frequency

modulated continuous waveforms. We give results for two

idealized example systems, showing how the validity of the

QS response is dependent on the system’s resonant behavior.

It will be shown that the error between exact output and QS

response is approximately linearly dependent on the sweep-

rate of the linear-frequency modulated excitation. We then

conduct our simulations for a realistic wideband radar system

operating from 5 GHz to 8 GHz and using impulse responses

extracted from electromagnetic simulations of a dipole and a

biconical antenna.

Index Terms— Quasi-Stationary, FMCW, Antennas

1. INTRODUCTION

Wideband linear-frequency modulated continuous-wave (LFM-

CW) radars are used in many state-of-the art systems for, e.g.,

local positioning [1] and imaging [2].

For high-accuracy and high-resolution systems, linear

ramp reproduction is important and thus also non-ideal ef-

fects of the antennas used have to be taken into account [3–5].

Those antenna non-idealities are generally treated by assum-

ing the QS model to simplify the expression for the response

of an antenna, modeled as LTI system with impulse response

h(t), to LFMCW excitation [3–5]. Instead of the exact

input-output relation for a system excited by a cosine with

instantaneous phase φ(t)

y(t) = h(t) ∗ x(t) = h(t) ∗ cos(φ(t)), (1)

the output is approximated by y(t) ≈ ŷ(t), where the QS

response ŷ(t) is given by

ŷ(t) = |H(jω(t))| · cos (φ(t) + arg {H(jω(t))}) , (2)

and ω(t) = d/dt φ(t) is the instantaneous radial frequency

of the excitation signal. It is often stated that (2) is a valid

approximation for (1) if the maximum rate of variation in ω(t)

is slow compared with the speed of response of h(t) [6], or if

the bandwidth of ω(t) is much less than the signal itself [4].

However, those statements do not give precise bounds on

the validity of the QS response and for a particular system

it always remains questionable if those conditions are ful-

filled or not. Indeed in the early years of frequency-modulated

transmission this issue has been ardently discussed and some

sophisticated analytic treatment has been proposed [6, 7], but

the provided formulas are only suitable to investigate systems

with a few poles. An application to systems with a large num-

ber of poles, which may result from extracting a pole/residue

model from antennas [8], has not yet been proposed.

Hence in this contribution we make use of todays compu-

tational power to investigate this issue on a numerical basis.

In particular, our research is driven by the following ques-

tion: given a certain radar antenna modeled by the impulse

response h(t) and a LFMCW excitation with a fixed lower

and upper sweep frequency, how large can the sweeprate, i.e.

the rate of variation in ω(t), be selected such that (2) is a valid

approximation for the exact response (1)?

2. THE LFMCW EXCITATION SIGNAL

We consider a single up-sweep, real-valued bandpass LFMCW

signal x(t) = cos(φ(t)) with a instantaneous frequency

f(t) = ω(t)/2π defined as a piecewise function

f(t) =

⎧⎪⎨
⎪⎩
fl for t < 0

fl + μt for 0 ≤ t < T

fu for T ≤ t

, (3)

where fl is the sweep lower frequency, μ the sweeprate, T
the sweep duration, and fu the sweep upper frequency. Con-

sequently, the instantaneous phase is given by integrating (3)

φ(t) =

⎧⎪⎨
⎪⎩
2πflt+ φ0

2πflt+ πμt2 + φ0

2πfu(t− T ) + 2πflT + πμT 2 + φ0

, (4)

where the integration constants are selected such that the

phase is continuous for all t and φ(0) = φ0. Note that (4)



is defined over the same intervals as (3), but the interval

limits have been omitted in (4). For numerical evaluation, a

finite-duration discrete-time representation x[n] is obtained

by shifting x(t) by the guard-time Tg to the right and then

taking N consecutive samples beginning at t = 0

x[n] = x(nTs − Tg), n ∈ [0, N − 1], (5)

where Ts = 1/fs is the sampling period and the total number

of samples is N = fs · (Tg + T + Tg) = Ng +NT +Ng , i.e.

the finite-duration series x[n] contains the LFMCW ramp of

duration T plus an additional CW component of duration Tg

at the beginning and the end of the signal. The relationship

between sampling rate and sweep- as well as guard-intervals

is selected such that

N,Ng, NT ∈ N. (6)

The series of instantaneous frequency can be obtained by

f [n] = f(nTs − Tg), n ∈ [0, N − 1]. (7)

Due to (6), the difference between any two samples of the

instantaneous frequency is an integer multiple of the LFMCW

frequency step ΔfLFMCW

f [n]− f [m] = kΔfLFMCW, k ∈ N0 (8)

and ΔfLFMCW is given by

ΔfLFMCW = (Ts/T ) · (fu − fl). (9)

3. THE ANTENNA AS LTI SYSTEM

We adopt a common method to characterize an antenna as LTI

system with spatially-dependent impulse response [9]. Thus,

given a plane-wave E-field �erx(t,Θrx,Φrx) incident from the

spherical coordinates Θrx,Φrx, the voltage wave u−
rx(t) leav-

ing the antenna terminals is given by

u−
rx(t)√
Zc,rx

= �hant(t,Θrx,Φrx) ∗ �erx(t,Θrx,Φrx)√
Z0

, (10)

where (·) ∗ (·) is a dual dot-product and time-domain con-

volution operator [8] taking into account the polarization

of �hant and �erx, and Z0 as well as Zc,rx are the charac-

teristic impedance of free space and the antenna refer-

ence impedance, respectively. Equivalently the farfield

�etx(t, r,Θtx,Φtx) at distance r, generated due to a voltage

wave u+
tx (t) incident on the antenna terminals is given by

�etx(t, r,Θtx,Φtx)√
Z0

=
1

r

1

2πc0
δ(t− r/c0)

∗ ∂

∂t
�hant(t,Θtx,Φtx) ∗ u+

tx (t)√
Zc,tx

. (11)

Since �hant is describes a LTI system, it can be represented as

a sum of complex exponentials [8]

h(t) = R1e
s1t + . . .+RKesKt =

K∑
k=1

Rke
skt, (12)

where sk are the poles and Rk the corresponding residues of

the system, with sk = σk + jωk and σk < 0.

The fundamental question motivating our investigations,

as already outlined in the introduction, can now be stated

more precisely: given that either the incident E-field �erx(t)
or the excitation voltage wave u+

tx (t) is an LFMCW signal,

can we then represent the received voltage wave u−
rx(t) or the

transmitted E-field �etx(t) using the QS response, and are thus

performance measures such as [3–5] valid?

To continue with our numerical evaluation, the antenna

impulse response is sampled at M time-instants

h[m] = h(mTs),m ∈ [0,M − 1], (13)

where the number of samples M is related to the impulse re-

sponse length Th via the sampling period Ts by

M = Th/Ts,M ∈ N. (14)

For computing the system’s QS response, the transfer

function evaluated at each instantaneous frequency sample

f [n] is necessary. While it principally could be obtained by

sampling the Laplace transform of (12) at 2πf [n], which

would be numerically very efficient, in the context of our

simulations a more accurate frequency-domain representa-

tion of the system is obtained by the FFT of h[n], since the

FFT includes the effects of sampling and truncation of h(t).
Hence we apply an FFT with sufficiently dense frequency

resolution to h[m] and then select the appropriate frequency

bin for each sample of the instantaneous frequency f [n]

HFFT[n] = FFT{h′[m]}
∣∣∣∣∣
m=�f [n]/ΔfFFT�

, (15)

where �(·)� denotes rounding towards the nearest integer and

h′[m] is the zero-padded version of h[m] defined by

h′[m] =

{
h[m] m ∈ [0,M − 1]

0 m ∈ [M,MFFT]
. (16)

Since the frequency resolution of the FFT is given by

ΔfFFT =
fs

MFFT

(17)

and the FFT frequency resolution should be fine enough to

contain a distinct frequency bin for each distinct instanta-

neous frequency sample

ΔfFMCW ≥ ΔfFFT (18)

the necessary FFT length is given by

MFFT =
T

T 2
s

1

fu − fl
=

1

μT 2
s

=
f2
s

μ
. (19)



4. EXACT, QUASI-STATIONARY, AND DISTORTION

RESPONSES

Assuming a sufficiently small sample duration Ts as well as

a sufficiently large evaluation time of the impulse response

Th (details will be discussed below), the exact response of

the system (1) can be numerically evaluated at discrete-time

samples by

y[n] = h[n− k] ∗ x[k] =
n∑

k=0

h[n− k]x[k]. (20)

The numerical representation of the QS response computed

using HFFT[n] (15) is then given by

ŷFFT[n] = |HFFT[n]| cos (2πf [n] + arg {HFFT[n]}) . (21)

Followingly, the distortion term dFFT[n] capturing the devia-

tion of the exact system response from the QS approximation

using the FFT transfer function is given by

dFFT[n] = y[n]− ŷFFT[n]. (22)

5. SAMPLE RATE AND SIGNAL DURATION

On a first glimpse, one might expect that the LFMCW excita-

tion signal is band-limited by fl and fu. But this is not true,

since the sweep bandwidth B = fu − fl increases depending

on the sweeprate [10]. Since a detailed discussion would

go beyond the scope of this contribution, we can merely

state here that throughout our investigations a sample rate of

fs,LFMCW = 10 ·fu has been shown to be sufficient for precise

results.

For representing the impulse response h(t), at least a sam-

ple rate corresponding to twice the maximum pole frequency

is necessary

fs,h(t) ≥ max
k

{ωk}/π. (23)

Otherwise spectral aliasing will occur. Then, HFFT and the

frequency response of the analog system will differ to a great

extent since poles with ωk > πfs are aliased into the first

Nyquist zone and the numerical computations will not accu-

rately model the analog system. Equation (23) can be satisfied

by either selecting a sufficiently large fs, by limiting the fre-

quency of the extracted poles of h(t), or by low-pass filtering

h(t). The sample rate is then determined by

fs = max{fs,h(t), fs,LFMCW}. (24)

The impulse response is sampled for a duration of Th,

where Th should be selected such that the energy of the im-

pulse response at the end of the sampling interval is almost

zero. Otherwise, significant spectral leakage will occur.

Finally it has to be avoided that transients due to the finite-

duration excitation x[n] leak into the sweep interval and the

wideband resonant
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Fig. 1. Impulse response (top) and frequency response mag-

nitude (bottom) of simple example systems. The resonant

system has K=4 conjugate complex poles sk = {−0.5 ±
j2π1.5,−0.5 ± j2π2.5} with Rk = {∓j0.5,∓j0.5}. The

wideband system has K=4 conjugate complex poles sk =
{−5 ± j2π1.5,−5 ± j2π2.5} with Rk = {∓j2.5,∓j4}. fu
and fl are indicated by two solid black vertical lines.

finite-duration excitation needs to be long enough to be able

to also observe the deviation from QS behavior, which leaks

over the sweep duration T . Hence the guard intervals need a

length of

Tg ≥ Th. (25)

6. EVALUATION FOR EXEMPLARY WIDEBAND

AND RESONANT LTI SYSTEMS

Before evaluating the distortion term obtained from realistic

antennas in a realistic radar scenario, the influence of sweep-

rate as well as system characteristics are examined for two ex-

ample LTI systems, which mimic the behavior of a resonant

and wideband antenna, in this section. Therefore, we restrict

our attention to a resonant and a wideband LTI system, with

impulse responses and frequency responses shown in figure 1,

defined by the dimensionless set of poles and residues given

in the caption of figure 1. The parameters of the excitation are

also dimensionless: fl = 1, fu = 3, fs = 10 · fu, Th = 10,

Tg = 20, μ = 1 · 10−4 . . . 1 · 10−1.

The LFMCW sweep starts at the normalized frequency

fl = 1, ends at the normalized frequency fu = 3, and hence

crosses both poles. Consequently, the envelope of the QS re-

sponses shown in figure 2 and 3 reflect the shape of the sys-

tem’s frequency response magnitude. Further note that the
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ŷ
[n
],
d
[n
]

ŷ
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Fig. 2. Quasi-Stationary responses and distortion signals ob-

tained for LFMCW excitation with (top) μ = 0.02 and (bot-

tom) μ = 0.0002 applied to resonant example system. The

fast sweep results in a significant distortion component.

envelope of the QS responses is independent of the sweep-

rate. The effect of changing sweeprate merely reflects into a

warping of the time-axis of the QS response.

In the case of a low sweeprate, μ = 0.0002, both sys-

tems are able to follow the LFMCW excitation signal, the

distortion component is low, and hence the QS response is

a valid approximation of the exact system response. How-

ever, for a fast sweeprate of μ = 0.02 the resonant system is

not able to follow the LFMCW excitation immediately. Espe-

cially when the instantaneousous frequency coincides with a

pole frequency the resonant modes of the system are excited,

a significant contribution of the distortion term to the total

output signal is obvious and the QS response alone cannot be

used to model the output of the system accurately.

Further insight into the dependence of distortion term

magnitude on the LFMCW signal’s sweeprate is given

by figure 4, where the maximum of the distortion term

maxm{d[m]} is plotted versus the sweeprate, for 0.0001 ≤
μ ≤ 0.1. Interestingly, the maximum of the distortion term

scales down linearly with the sweeprate. In addition, the

distortion term obtained from the wideband system is about

100 times smaller than the distortion term obtained from the

resonant system.

7. REALISTIC RADAR SYSTEM AND ANTENNAS

We now consider a realistic radar system motivated by the

authors antenna designs from [1]. Therefore, a wideband bi-

conical antenna and a resonant dipole have been simulated
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Fig. 3. Quasi-Stationary responses and distortion signals ob-

tained for LFMCW excitation with sweeprates of (top) μ =
0.02 and (bottom) μ = 0.0002 applied to wideband example

system. The distortion component is small for both μ.

using the finite integration technique in the frequency range

from 0 GHz to 20 GHz, and the antenna impulse responses for

Θrx = 90◦,Φrx = 0◦ have been computed by post-processing

the simulation results, like shown in figure 5. The Dipole has

a length of 13.77 cm, a wire thickness of 0.3 mm and reso-

nances at 1 GHz, 3 GHz, 5 GHz, etc. The Biconical antenna

has a radius of 20 mm, an opening angle of 90◦ and thus an

S11 ≤ −10 dB covering the range from 3 GHz to the upper

simulation frequency. The parameters of the LFMCW excita-

tion are: fl = 5GHz, fu = 8GHz, fs = 10 · fu, Th = 10 ns,

Tg = 12 ns, μ = 1 · 1018 . . . 1 · 1013 Hz/s.

Figure 6 shows the distortion term’s maximum magnitude

wideband resonant

normalized sweeprate μ
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Fig. 4. Maximum of error maxm{d[m]} versus sweeprate for

both, resonant and wideband systems. The error in the wide-

band system is approximately one percent of the error ob-

tained for the resonant system. For both systems, the error

linearly scales down with the sweeprate.
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Fig. 5. Normalized impulse responses (top) and frequency re-

sponse magnitudes (bottom) of Dipole and Biconical anten-

nas. fl and fu are indicated by two solid black vertical lines.
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Fig. 6. Error maximum maxm{d[m]} and FFT length MFFT

vs. sweeprate for both, Bicone and Dipole. For both systems,

the error linearly scales down with the sweeprate.

versus the sweeprate obtained from both antennas in receive

mode. Again, an approximately linear dependence of error

magnitude and sweeprate is obvious. In addition, as expected

from the simplified example shown above, the error using a

wideband biconical antenna is again around 100 times smaller

than the error obtained from the dipole antenna. Note that,

although the radar system from [1] is designed for a sweep-

rate of μ = 3 · 1012[Hz/s], the lowest simulated sweeprate

is μ = 1 · 1013[Hz/s]. This is due to the high computa-

tional complexity of the FFT-based frequency response com-

putation, compare the MFFT curve from figure 6 and (19).

8. CONCLUSIONS & OUTLOOK

We numerically investigated the QS response of antennas to

wideband LFMCW excitation and showed that, depending

on the resonant behavior of the system and with an increas-

ing sweeprate, the QS approximation becomes less accurate.

Hence, in fast-sweep wideband LFMCW systems of future

radar sensor systems, one should carefully check whether the

QS response and thus the related parameters describing the

LFMCW ramp distortion (group delay, phase response) can

be applied. The proposed method is indeed suitable to investi-

gate those effects, but results in very high computational com-

plexity for numerically evaluating practically relevant radar

systems. Hence future work may be based on using analytical

formulas [7] to reduce the computational complexity.
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