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ABSTRACT
We present a low-power design for Active Interference

Cancellation (AIC) sculpting of the OFDM spectrum, based

on sparse design concepts. Optimal AIC designs compute

cancellation weights based on contributions from all data sub-

carriers. Thus, as the number of subcarriers grows, power

consumption becomes a concern, and suboptimal solutions

that avoid involving all subcarriers are of interest. In this con-

text, we present novel sparse AIC designs based on a zero-

norm minimization of the matrix defining the cancellation

weights. These designs drastically reduce the number of oper-

ations per symbol, and thus the power consumption, while al-

lowing to tune the loss with respect the optimal design. They

can be efficiently obtained and significantly outperform usual

thresholding or sparsity-inducing �1-norm minimization ap-

proaches.

1. INTRODUCTION

Power consumption of communication technologies has be-

come a concern, both from the service price and from environ-

mental perspectives [1, 2]. In battery-driven mobile devices,

as the different signal processing tasks required by current

technologies (such as nonlinear front-end impairment com-

pensation, synchronization, spectrum shaping, etc.) become

more and more sophisticated, the power spent on these signal

conditioning tasks cannot be disregarded. Not only computa-

tional capability must be taken into account as a design con-

straint, but also power consumption. In particular, this paper

focuses in low-power designs for OFDM spectrum sculpting.

OFDM is an appealing modulation for cognitive systems

whose transmit spectrum must be adjusted to avoid interfering

primary users laying within the transmission band. These ad-

justments can in principle be performed by turning off sets

of subcarriers, given the bandwidth partitioning feature of

OFDM [3, 4]. However, the high subcarrier sidelobes result-

ing from the FFT implementation of standard OFDM require

the use of more sophisticated spectrum sculpting techniques.
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Active interference cancellation (AIC) reserves a small

subset of subcarriers to be modulated in order to cancel in-

terference over the protected band, and has received consider-

able attention recently [5]–[10]. AIC is quite effective and has

the advantage of being transparent to the receiver. A power

spectral density based AIC scheme (PSD-AIC) recently pro-

posed in [10] employs a fixed linear combination of the data

subcarriers to compute the cancellation coefficients, and thus

the online computational cost reduces to a matrix-vector prod-

uct. However, the linear combination matrix involved can be

large in practical OFDM implementations, resulting in exces-

sive power consumption. For example, in a system with 1024

subcarriers, with 24 reserved for interference cancellation and

1000 used for data transmission, the optimal AIC design will

require 24000 complex multiplications per OFDM symbol.

Although it seems intuitive that some (in fact, many) coeffi-

cients in this 24 × 1000 matrix might be discarded in order

to reduce the power consumption, obtaining the set of coeffi-

cients to retain is not straightforward.

The problem of determining the coefficients to discard

given a set of design constraints can be formulated as a zero-

norm (cardinality) problem. Zero-norm, or �0, minimization

problems are highly complex combinatorial problems whose

solution cannot be obtained in general. Replacing the �0-norm

cost by a surrogate �1-norm cost, easier to handle analytically,

has been a popular and successful approach in compressive

sensing applications [11], and has been suggested as well in

different problems such as sparse FIR filter design [12] and

sparse FIR equalizer design [13]. However, minimization of

the �1-norm does not necessarily imply minimization of the

�0-norm [14]. In [13, 15], heuristic rules were employed to

reduce the complexity of the �0-norm approach for the sparse

FIR equalizer/filter design problem. In general, such heuris-

tics must be tailored for the particular problem at hand.

In this context, the main contribution of this paper is to

derive sparse designs to reduce power consumption in PSD-

AIC. We show that this can be achieved by an approximate �0-

norm minimization, based on the particular structure of the in-

terference matrices involved. An efficient iterative algorithm

is provided that meets the design constraints tightly. The

performance of the proposed designs is assessed and com-

pared against thresholding and �1-norm approaches to sparse



design. The proposed schemes result in significantly lower

power consumption in all cases.

The paper is organized as follows. The signal model and

the optimal non-sparse PSD-AIC solution are presented in

Sec. 2. In Sec. 3 the low-power design problem is introduced

and the proposed solutions are derived. A performance eval-

uation is given in Sec. 4, and conclusions are drawn in Sec. 5.

2. PROBLEM STATEMENT

2.1. PSD-AIC Signal Model

Consider a cognitive OFDM transmitter with N subcarriers.

A primary system to be protected from interference is known

to operate in a frequency band B spanning NP contiguous

cognitive subcarriers. AIC schemes reserve these NP sub-

carriers, plus NC more to generate a spectrum notch over B,

usually under a power budget constraint. This leaves ND =
N −NP −NC subcarriers for data transmission. The OFDM

signal spectrum is the superposition of all subcarrier spectra,

affected by their corresponding modulating coefficients xk :

X(f) =
N−1∑
k=0

xkφk(f) = xTφ(f), (1)

with φ(f) � [φ0(f) · · · φN−1(f) ]
T , x � [x0 · · · xN−1 ]

T ,

and with

φk(f) = Me
−jπM

N

(
f

Δf
−k

)
sincM

[
1

N

(
f

Δf
− k

)]
G(f),

(2)

the periodic sinc spectrum1 of the k-th subcarrier, times the

frequency response G(f) of the interpolation filter in the D/A

converter [16], assumed an ideal brickwall filter retaining only

the spectrum replica within the system bandwidth. M =
N + Ncp is the length of the cyclic-prefix extended symbol,

measured in samples, and Δf is the subcarrier spacing.

In AIC schemes, the N × 1 vector x in (1) modulat-

ing the subcarriers for a given OFDM symbol can be writ-

ten as x = αSd + Tc, where d ∈ C
ND is the zero-mean

data vector, assumed with covariance E{ddH} = IND
, and

c ∈ C
NP+NC is the vector of cancellation coefficients. Ma-

trices S ∈ C
N×ND and T ∈ C

N×(NP+NC) comprise dif-

ferent sets of columns of IN , and map data and cancellation

coefficients to the data and reserved subcarrier locations re-

spectively. The scaling factor α (0 < α ≤ 1) controls how

the available transmit power is shared between the data and

cancellation subcarriers.

In PSD-AIC [10], cancellation coefficients are linear com-

binations of the data symbols, i.e., c = Θd. Hence,

x = G(Θ)d, with G(Θ) � αS + TΘ, (3)

where Θ ∈ C
(NP+NC)×ND is the design parameter.

1As in [10], conventional cyclic-prefix OFDM is assumed for simplicity.

2.2. Optimal PSD-AIC
From (1)-(3), and following [16, 10], the signal PSD is ob-

tained in terms of Θ as

Px(f,Θ) = E
{
|X(f)|2

}
= Tr{GH(Θ)Φ(f)G(Θ)},

(4)

where we have introduced Φ(f) � φ(f)φH(f). Based on

(4), the PSD-AIC design problem subject to a power con-

straint Pmax is stated as

min
Θ

∫
B
Px(f,Θ)df s.t.

∫ ∞

−∞
Px(f,Θ)df ≤ Pmax, (5)

which is a convex problem. Using the generalized singular

value decomposition [17], it is possible to obtain the optimal

matrix Θopt efficiently [10].

Fig. 1 illustrates typical PSD-AIC results, for a system

with N = 256, a target band B spanning NP = 20 sub-

carriers, NC = 6 cancellation subcarriers (3 at each side of

B), and a 10% power share given to the reserved subcarriers.

The PSD P0(f) � Px(f,0) obtained by just turning off the

reserved subcarriers (c = 0) is also shown to highlight the

sculpting capability of PSD-AIC.
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Fig. 1. Typical spectrum sculpting results using PSD-AIC

with a target band spanning subcarriers 40 to 59.

Note that Θopt is a non-sparse matrix (i.e. all of its ele-

ments are in general nonzero). When the number of system

subcarriers is large (and therefore so is ND) as in current and

foreseen OFDM systems, computing Θoptd at each OFDM

symbol can be power consuming. Therefore, sparse, and thus

low-power suboptimal solutions are of interest.

3. LOW-POWER AIC

The low-power AIC design problem can be stated as finding

a weight matrix with as few nonzero elements as possible,

while minimizing the power spill over the protected band B
and meeting the power constraint. Let Ψ denote the param-

eter matrix under some additional sparsity constraint. As we

know the optimal matrix solving (5) is non-sparse, one has

min
Ψ

∫
B
Px(f,Ψ)df ≥

∫
B
Px(f,Θopt)df � PB, (6)



when both optimizations are subject to the same power con-

straint. Therefore, we introduce a design parameter γ > 1
quantifying the performance loss with respect to Θopt. Also

introduce the N ×N Hermitian matrices

ΦB �
∫
B
Φ(f)df, ΦT �

∫ ∞

−∞
Φ(f)df, (7)

so that, with ψ � vec(Ψ), the low-power design is stated as

min
ψ

‖ψ‖0 s.t.

{
Tr{GH(Ψ)ΦT G(Ψ)} ≤ Pmax,
Tr{GH(Ψ)ΦBG(Ψ)} ≤ γPB,

(8)

where ‖·‖0 is the �0-norm (number of nonzero entries).

Given the dimensions of the matrices involved, the com-

plexity of the combinatorial problem (8) precludes a direct

solution. Alternatively, we propose a two-step iterative algo-

rithm2 that searches for a near-optimal sparse solution Ψ∗,

considering the constraints separately. The algorithm is ini-

tialized with the non-sparse solution Θopt, and iterates be-

tween the two steps described next, until no further weights

can be discarded; this is summarized in Algorithm 1.

Algorithm 1 Low-power AIC design

Initialization: n = 0, Ψ0 = Θopt

repeat
• n ← n+ 1
• Obtain Ψ̃n by zeroing elements from Ψn−1 ac-

cording to Step 1.

• Obtain Ψn by reoptimizing the nonzero elements

of Ψ̃n according to Step 2.

until ‖ψn‖0 = ‖ψn−1‖0
Output: Ψ∗ = Ψn

3.1. Step 1: Weight elimination
Consider the zero-norm minimization in (8) taking into ac-

count only the performance loss constraint. Let us define

Q � T TΦBT , qH
i � 2αsTi ΦBT , (9)

with si (i = 1, . . . , ND) the columns of S. Inserting the

expresion for G(Ψ) from (3) in (4) and rearranging using (9),

the weight elimination subproblem can be expressed as

min
ψ

‖ψ‖0 s.t. P0B +ψHQψ +Re
{
q̃Hψ

} ≤ γPB, (10)

where P0B � α2 Tr
{
STΦBS

}
and

Q � IND
⊗Q, q̃ � [ qT

1 qT
2 · · · qT

ND
]T . (11)

A problem analogous to (10) has been considered in [15]

from the perspective of sparse filter design, where a proce-

dure to obtain the optimal solution for the structure of Q in

2Note that the proposed algorithms are applied at the design stage, and

hence they do not affect implementation (online) cost.

(10) was derived. However, such approach is too computa-

tionally demanding due to the large size (NP + NC) of the

block-diagonal elements Q. In [15] a greedy approach is also

proposed, which is shown to yield the optimal solution if Q
in (10) is diagonal. Although this is not the case in general,

the strong diagonal structure of the block diagonal element Q
makes such greedy approach a good candidate for obtaining

a near-optimal solution. Specifically, note that Q is a sub-

matrix of ΦB in (7), and thus its elements are given by

Φ
(i,j)
B =

∫
B
φi(f)φ

H
j (f)df, (12)

for i, j within the index set of reserved subcarriers. Since the

functions φi(f) correspond to the spectrum of OFDM subcar-

riers, each row of Q is maximum for i = j and its magnitude

rapidly drops as |i− j| increases3. Further, this near diago-

nal behavior is stronger for the NP subcarriers within band

B (usually most of the reserved subcarriers), since their main

lobe is included in the integral. Thus, we replace the con-

straint in (10) by

P0B +

(NP+NC)ND∑
i=1

[Q(i, i)|ψ(i)|2 +Re {q̃∗(i)ψ(i)}]︸ ︷︷ ︸
�ρ(i)

≤ γPB.

(13)

At this point, we take ψ = vec(Ψn−1) from the previous it-

eration, and proceed to discard the elements of ψ with the

smallest associated contribution ρ(i) until right before the

constraint in (10) is no longer met. The resulting matrix and

the corresponding set of zero coefficients are denoted by Ψ̃n

and Mn respectively. Despite the approximation introduced

in (13), simulation results in Sec. 4 will show that the number

of nonzero weights is effectively reduced.

3.2. Step 2: Weight update

The procedure in Step 1 allows to reduce the number of ac-

tive (nonzero) weights, but now it becomes necessary to re-

optimize these active weights and also to ensure that the orig-

inal power constraint in (8) is satisfied. This results in the

following problem:

min
Ψ

∫
B
Px(f,Ψ)df s.t.

{ ∫∞
−∞ Px(f,Ψ)df ≤ Pmax,

Ψ(i, j) = 0 for (i, j) ∈ Mn.
(14)

Note that Problem (14) has a convex objective and convex

constraints. In fact, the constraints Ψ(i, j) = 0 for (i, j) ∈
Mn can be removed by expressing Px(f,Ψ) in terms of the

nonzero elements of Ψ only, and optimizing with respect to

these variables following the same procedure as in [10] for

the original problem (5).

3This is a general property of multicarrier modulations, and not just of

conventional OFDM as considered here.
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Fig. 2. Sparsity vs. performance loss using different designs.

4. PERFORMANCE EVALUATION

The performance of the proposed low-power design, termed

LP-AIC in what follows, is evaluated next. The sparsity ob-

tained in the matrix of linear combination weights is assessed

under different settings and compared against two alternative

designs. The first one is a simplified scheme by which the

�0-norm heuristic of Sec. 3.1 is applied to the optimal non-

sparse matrix Θopt to discard some of its coefficients, without

any further refinement; we term this scheme “�0-norm heuris-

tic.” The second design replaces the �0-norm in (8) with the

surrogate �1-norm4, and is termed “�1-norm minimization.”

We consider an OFDM system with N = 256 subcarriers

and a 5% (12 samples) cyclic prefix. The protected band B
spans subcarriers 40 − 49 or 40 − 59, to obtain target band-

widths of NP = 10 or 20 subcarriers respectively. NC = 6
additional subcarriers are reserved for protection improve-

ment, 3 at each side of B as in Fig. 1. In all cases the power

share given to the reserved subcarriers is set to 10%.The pa-

rameter γ in (8) is adjusted such that different loss targets

from the non-sparse optimal solution of (5) are obtained.

Fig. 2 shows the degree of sparsity in the weight matrix

obtained by the three designs considered for NP ∈ {10, 20},

as a function of the target loss. The proposed LP-AIC design

significantly outperforms the other two methods in all cases,

yielding the smallest amount of nonzero coefficients even for

low degradation targets. Specifically, in the most stringent

case (NP = 10 and 0.1 dB loss), the percentage of nonzero

coefficients is just 14.8%. At the other extreme (NP = 20 and

allowing a 6 dB loss) this percentage drops to a mere 2.2%.

For NP = 10, Fig. 2 also shows results obtained with a

4This change makes the problem in (8) convex, such that it can be solved

for the optimal solution using adequate convex solvers. These optimal solu-

tions are the ones used for comparison.

straightforward thresholding approach5. Clearly, this method

fails to provide good results for small to moderate losses.

It is observed that the �1-norm design performs consider-

ably worse than the schemes based on the �0-norm. Note also

that, as the band to be protected becomes wider, the percent-

age of nonzero coefficients decreases for the �0-norm based

designs, whereas on the contrary it increases for the �1-norm

minimization. The sparsity patterns obtained for each scheme

give a better insight into this behavior.
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Fig. 3 shows the resulting sparsity patterns of the weight

matrices for NP = 10 and 1 dB performance loss. These

patterns are a graphical representation of the matrix Θ in (3).

There are NP + NC = 16 rows in each plot correspond-

ing to the reserved subcarriers, and N = ND + 16 = 256
columns corresponding to the system subcarriers. The 16
gray columns are not part of Θ, but are inserted to empha-

size where the target band is located. Nonzero elements are

plotted in black. Note that, in the first two subplots corre-

sponding to the �0-norm based designs, most of the zero ele-

ments correspond to the reserved subcarriers aligned with the

protected band. This happens because those subcarriers can-

not be allocated much power (see example in Fig. 1) and are

thus good candidates for being discarded using the heuristic

in Sec. 3.1. The opposite trend is observed for the �1-norm

minimization design (third subplot): since those weights have

a small contribution to the overall �1-norm, the minimizer of

this objective function tends to discard more high-power can-

cellation subcarriers outside the protected band. Therefore,

�0-norm approaches are found to better exploit the particular

structure of the AIC problem than the �1-norm minimization

5Specifically, the �1-norm of vec(Θopt) is normalized to 1, and all nor-

malized elements below a defined threshold are dropped. Then, the remain-

ing elements are recomputed following Sec. 3.2.
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Fig. 4. Sparsity improvement per iteration for LP-AIC and

different loss targets. Results are shown for NP = 10.

scheme. This phenomenon has also been reported in different

contexts (see e.g. [18, 15]) and is due to the fact that the con-

ditions for �1-norm relaxation to provide the �0-norm solution

are not satisfied in the problem at hand [14].

Our last experiment focuses on the advantage of LP-AIC

with respect to the �0-norm heuristic. The main difference be-

tween these schemes is that LP-AIC recomputes the optimal

matrix after each �0-norm reduction step, allowing further it-

erations to obtain a sparser solution meeting the constraints

more tightly. Fig. 4 shows the amount of coefficients dis-

carded in each iteration of LP-AIC for different performance

targets with NP = 10. Observe that most coefficients are

discarded in the first iteration (82.4% for a 6 dB target loss),

corresponding to the �0-norm heuristic scheme, and 11.4, 4.2,

1.4 and 0.5% in subsequent iterations. Thus, a near optimal

solution can be found with as few as two or three iterations.

5. CONCLUSIONS

We have proposed a novel low-power AIC design based on an

�0-norm minimization algorithm that iteratively removes ele-

ments from the non-sparse optimal PSD-AIC matrix of lin-

ear combination coefficients and readjusts surviving weights.

The proposed design drastically reduces the power consump-

tion of AIC as only a small fraction of nonzero weigths is

kept. The proposed design significantly outperforms the stan-

dard thresholding or �1-norm approaches, which are not able

to exploit the particular structure of the AIC problem.
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