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ABSTRACT
State estimation and tracking often require optimal or unbi-
ased estimators. In this paper, we propose a new minimum
variance unbiased (MVU) finite impulse response (FIR) fil-
ter which minimizes the estimation error variance in the un-
biased FIR (UFIR) filter. The relationship between the filter
gains of the MVU FIR, UFIR and optimal FIR (OFIR) filters
is found analytically. Simulations provided using a polyno-
mial state-space model have shown that errors in the MVU
FIR filter are intermediate between the UFIR and OFIR fil-
ters, and the MVU FIR filter exhibits better denoisng effect
than the UFIR estimates. It is also shown that the perfor-
mance of MVU FIR filter strongly depends on the averaging
interval of N points: by small N, the MVU FIR filter ap-
proaches UFIR filter and, if N is large, it becomes optimal.

1. INTRODUCTION

In the last three decades, many results have been achieved
in the design of finite impulse response (FIR) estimators
(smoother, filter and predictor) under different conditions
[1–7]. Among the existing algorithms, an important progress
was achieved by Kwon, Kim and Park in [7], where the prob-
lem by combining the receding horizon strategy with the
KF was solved. After that, the unbiased FIR (UFIR) filter
was proposed for discrete-time system model in [8], and a
fixed-lag FIR smoother was developed in [9] for continuous-
time models. Quite recently, an UFIR filter was derived by
Shmaliy in [10] and [11], for real-time state space models.
Further, the p-shift optimal FIR (OFIR) estimator was ob-
tained in [12] and [13] for time-invariant state space model.
Using in part the results obtained in [13], Shmaily proposed
in [14] a Kalman-like UFIR estimator for the time-variant
case. In [15], a suboptimal FIR estimator was developed
by using the extended KF strategy. Moreover, unified forms
for KF and FIR filter and smoother were shown and inves-
tigated in [16]. Although the progress in FIR filtering cer-
tainly opens new horizons in optimal and robust estimation of
linear and nonlinear models [17–19], some well-recognized
approaches such as the minimum variance unbiased (MVU)
estimation still remain undeveloped in FIR filtering.

In this paper, a MVU FIR filter is derived for discrete
time-variant state space model to minimize the variance in
the UFIR filter proposed in [13]. Compared to the IIR filters,
the MVU FIR filter inherits advantages of FIR structures and
is more robust against the temporary modeling uncertainties.
We use the following notations: Rn denotes the n dimen-
sional Euclidean space, E{·} denotes the statistical averaging
of the stochastic process or vector, diag(e1 · · ·em) represents
a diagonal matrix with diagonal elements e1, · · · ,em, tr(M)
is the trace of M, and I is the identity matrix of proper di-
mensions.

2. STATE-SPACE MODEL AND PRELIMINARIES

Motivated by the problems of state estimation and tracking
often arising in signal processing and wireless systems, we
consider a linear discrete-time system represented in state-
space with the time-variant model

xk = Akxk−1 +Bkwk , (1)
yk = Ckxk +Dkvk , (2)

where xk ∈Rn is the state vector in Euclidean space, yk ∈Rp

is the measurement vector, Ak ∈Rn×n, Bk ∈Rn×u, Ck ∈Rp×n

and Dk ∈Rp×v are time-variant matrices, which are assumed
to be known. The process noise wk ∈ Ru and measurement
noise vk ∈ Rv are zero mean, E{wk} = 0 and E{vk} = 0,
mutually uncorrelated and have arbitrary distributions and
known covariances Q(i, j)=E{wiwT

j }, R(i, j)=E{vivT
j } for

all i and j, meaning that wk and vk do not have to be white.
The FIR filter can be expressed as a linear combination

of finite samples of measurements as

x̂k|k = KkYk,l , (3)

where l = k−N +1 is the starting point of the horizon, N is
the horizon length, x̂k|k is the estimate1, Yk,l is a vector mea-
surements collecting on a horizon [l,k], and Kk is the filter
gain determined by a given performance criterion.

The operation principles of the FIR and IIR filters are il-
lustrated in Fig.1. A distinct difference is that only one most
recent measurement is used in IIR (Kalman) filtering to pro-
vides the estimate, while FIR estimators employ N most re-
cent measurements. This leads to N times larger computation
time than in IIR filtering. However, some good properties
such as the BIBO stability and better robustness are guaran-
teed at the cost of extra computation time. We formulate the
problem as follows: Given the model, (1) and (2), we would
like to derive a MVU FIR filter minimizing the variance in
the UFIR filter, by

Kk = argmin
Kk

E
{(

xk− x̂k|k
)(

xk− x̂k|k
)T

}
. (4)

We also wish to compare errors in three different FIR filters
(MVU FIR derived in this paper and the UFIR and OFIR
filters proposed in [14] and [20] respectively) to each other,
and analyze the trade-off based on a polynomial state-space
model.

1x̂k|k means the estimate at k utilizing on the measurements from the past
to k.
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Figure 1: Operation time diagrams of the IIR and FIR structures.

3. MVU FIR FILTER

In order to derive the MVU FIR filter on a horizon of N past
measurements from l to k, we represent (1) and (2) in a batch
form following [14] and [20] as

Xk,l = Ak,lxl +Bk,lWk,l , (5)

Yk,l =Ck,lxl +Hk,lWk,l +Dk,lVk,l . (6)

Here, Xk,l ∈ RNn, Yk,l ∈ RN p, Wk,l ∈ RNu and Vk,l ∈ RNv are
specified as, respectively,

Xk,l =
[
xT

k xT
k−1 · · ·xT

l
]T
, (7)

Yk,l =
[
yT

k yT
k−1 · · ·yT

l
]T
, (8)

Wk,l =
[
wT

k wT
k−1 · · ·wT

l
]T
, (9)

Vk,l =
[
vT

k vT
k−1 · · ·vT

l
]T
. (10)

The extended model matrix Ak,l ∈ RNn×n, process noise
matrix Bk,l ∈RNn×Nu, observation matrix Ck,l ∈RN p×n, aux-
iliary process noise matrix Hk,l ∈ RN p×Nu and measurement
noise matrix Dk,l ∈ RN p×Nv are all time-variant and depen-
dent on the current time k and the horizon length N. Model
(1) and (2) suggests that these matrices can be written as,
respectively

Ak,l = [A T
k,l+1,A

T
k−1,l+1, · · · ,A T

l+1,l+1, I]
T , (11)

Bk,l =
Bk Ak,kBk−1 · · · Ak,l+2Bl+1 Ak,l+1Bl
0 Bk−1 · · · Ak−1,l+2Bl+1 Ak−1,l+1Bl
...

... · · ·
...

...
0 0 · · · Bl+1 Al+1,l+1Bl
0 0 · · · 0 Bl

 ,

(12)
Ck,l = C̄k,lAk,l , (13)

Hk,l = C̄k,lBk,l , (14)

Dk,l = diag(DkDk−1 · · ·Dl) , (15)

with

Aψ,ζ =

{
Aψ Aψ−1 · · ·Aζ , i f ψ > ζ

Aψ , i f ψ = ζ , (16)

C̄k,l = diag(CkCk−1 · · ·Cl) , (17)

where ψ > ζ . Note that the state equation specified by (5)
and (6) at the initial point l is xl = xl +Blwl , suggesting that
wl is zero-valued. That is, the initial state xl is required to be
known or estimated optimally. The following lemma will be
used to derive the MVU FIR filter.

Lemma 1 The trace optimization problem is given by:

argmin
K

tr[(KA−B)C(KA−B)T

+(KG−F)D(KG−F)T +KPKT ],
(18)

subject to KE = H, where C = CT > 0, D = DT > 0, P =
PT > 0, and A, B, C, D, E, F, G, H, and P are constant ma-
trices of proper dimensions. The solution to this optimization
problem is as follows:

K =[ H B F ]

×


(
ET Ξ−1E

)−1ET Ξ−1

CAT Ξ−1
(

I−E
(
ET Ξ−1E

)−1ET Ξ−1
)

DGT Ξ−1
(

I−E
(
ET Ξ−1E

)−1ET Ξ−1
)

 ,
(19)

where Ξ = ACAT +GDGT +P.

The proof can be obtained following similar lines provided
in [21] and is omitted here.

3.1 Design of MVU FIR Filter
In order to minimize the variance in UFIR filter, we decom-
pose Kk as

Kk = K̄k + K̃k, (20)

where K̃k is an unknown additive term to be determined, and
K̄k is the known unbiased gain [14] specified by

K̄k = Ak,l+1(CT
k,lCk,l)

−1CT
k,l (21)

and derived to satisfy the unbiasedness condition E{xk} =
E{x̂k|k}. From (5), the system state xk can be constructed as

xk = Ak,l+1xl + B̄k,lWk,l , (22)

where B̄k,l is the first row in (12). Substituting xk with (22),
x̂k|k with (3) using (20) in the unbiasedness condition yields
the constraint

K̃kCk,l = 0, (23)

where the fact known from [14] that K̄kCk,l = Ak,l+1 is used.
Now, our objective is to obtain K̃k in a way such that the
estimate has the minimum variance

K̃k = argmin
K̃k

E
{

tr
[(

xk− x̂k|k
)(

xk− x̂k|k
)T

]}
(24)

with constraint K̃kCk,l = 0. Substituting (4) and (3) with con-
sideration of (20) into (24) yields

K̃k = argmin
K̃k

E
{

tr
[(

Ak,l+1xl + B̄k,lWk,l

−
(
K̄k + K̃k

)
Ck,lxl−

(
K̄k + K̃k

)
×
(
Hk,lWk,l +Dk,lVk,l

))
(· · ·)T

]}
,

(25)



where (· · ·) denotes the same term as its previous term. By
taking into account of K̄kCk,l = Ak,l+1, observing that sys-
tems noise vector Wk,l and measurement noise Vk,l are pair-
wise independent, providing the averaging, and rearranging
the terms, (25) becomes

K̃k = argmin
K̃k

tr
[(

K̃kHk,l + K̄kHk,l− B̄k,l
)

Θw,l (· · ·)T

+K̃k∆x,lK̃T
k +(K̃k + K̄k)∆v,l(· · ·)T ] , (26)

where the auxiliary matrices are

Θw,l = E
{

Wk,lW T
k,l
}
, (27)

∆x,l = Ck,lE
{

xlxT
l
}

CT
k,l , (28)

∆v,l = Dk,lE
{

Vk,lV T
k,l
}

DT
k,l . (29)

Next, by using the result of Lemma 1 with the replace-
ments A← Hk,l , B← (B̄k,l − K̄kHk,l), C← Θw,l , D← ∆v,l ,
E ←Ck,l , F ←−K̄k, G← I, H ← 0, and P← ∆x,l , the solu-
tion to the optimization problem (26) can be obtained as

K̃k,l = Ωk,l(I−Λk,l) , (30)

where

Ωk,l = (B̄k,lΘw,lHT
k,l− K̄k∆w+v,l)∆−1

x+w+v,l , (31)

∆w,l = Hk,lΘw,lHT
k,l , (32)

∆w+v,l = ∆w,l +∆v,l , (33)
∆x+w+v,l = ∆x,l +∆w,l +∆v,l , (34)

Λk,l =Ck,l(CT
k,l∆
−1
x+w+v,lCk,l)

−1CT
k,l∆
−1
x+w+v,l . (35)

In order to compute (30), the variance of the initial state ∆x,l
is required. Using the approximation E{xlxT

l } ≈ x̂l|kx̂T
l|k, the

following discrete algebraic Riccati equation (DARE) can be
used to find ∆x,l , as in [13],

Yk,lY T
k,l∆
−1
w+v,l∆x,l−∆x,l∆−1

w+v,l∆x,l−2∆x,l−∆w+v,l = 0 . (36)

The MVU FIR filter is now specified by the following
theorem.

Theorem 1 Given the discrete time-variant state space
model (1) and (2) with zero mean and mutually independent
noise vectors wk and vk having arbitrary distributions and
known covariances, the MVU FIR filter utilizing measure-
ments from l to k can be written as

x̂k|k =
[
K̄k +Ωk,l(I−Λk,l)

]
Yk,l , (37)

where Yk,l ∈ RN p is the measurement vector given by (8), K̄k
is obtained by (21) with Ak,l+1 and Ck,l specified by (16) and
(13) respectively, Ωk,l and Λk,l are determined using (31) and
(35) by solving the DARE (36).

————————————————————-
The proof has been provided by (20)-(36).
Note that the horizon length N should be chosen such

that the inverse in K̄k specified by (21) exists. In general, N
can be set as N ≥ n, where n is the number of model state.
Table I summarizes the steps in the MVU FIR estimation
algorithm, in which ∆w,v and ∆v,l are assumed to be known
for measurements available from l to k. Given N, solve the
DARE (36). Then, compute K̄k according to (21) by using
(11) and (13). With (31) and (35), the MVU FIR estimate
x̂k|k can be obtained by (37) at time k.

Table 1: MVU FIR Filtering Algorithm
Stage

Given: N ≥ n, l = k−N +1
Solve: ∆x,l using the DARE (36)
Find: K̄k by (21), Ωk,l by (31), and Λk,l by (35)

Compute: x̂k|k = [K̄k +Ωk,l(I−Λk,l)]Yk,l

3.2 FIR Filter Gains
As can been seen from Theorem 1, the term I−Λk,l in K̃k
is introduced by the constraint K̃kCk,l = 0 evolved from the
unbiasedness condition. Specifically, the existence of term
I −Λk,l ensures the unbiasedness of the FIR filter. If we
neglect this constraint, the matrix E in Lemma 1 will be
replaced by the zero matrix when solving the optimization
problem (26), thus leading to Λk,l = 0. At this point, we have
K̃k = Ωk,l and the MVU FIR filter gain Kk becomes the OFIR
filter gain K̂k, due to the following equality:

K̂k = K̄k +Ωk,l , (38)

with
K̂k = (K̄k∆x,l + B̄k,lΘw,lHT

k,l)∆
−1
x+w+v,l . (39)

which is given in [17] as the filter gain of the OFIR filter. On
the other hand, it follows from (20) and (30) that

Kk = K̂k−Ωk,lΛk,l = K̄k +Ωk,l(I−Λk,l). (40)

This equality provides the analytical relationships be-
tween the MVU FIR filter gain Kk, the OFIR filter gain K̂k,
and the UFIR filter gain K̄k. Note that the structure of the
MVU FIR filter is shown to be consistent with the UFIR and
OFIR filters, suggesting that the UFIR, MVU FIR and OFIR
filters do not get away essentially from each other and all the
FIR filters can be transformed to each other by adding or sub-
tracting the corresponding terms. Moreover, the UFIR filter
gain K̄ plays a fundamental role in the FIR filter design being
independent on the noise statistics

4. EXAMPLES AND APPLICATIONS

Extensive comparisons between FIR filters with Kalman
methods can be found in [13, 14, 20, 22–24]. We therefore
mostly compare the MVU FIR filter with the UFIR and OFIR
filters in order to investigate the trade-off. Towards this end,
a two-state polynomial state space models (1) and (2), speci-
fied with Bk = [1,1]T , Dk = 1, Ck = [1,0], and

Ak =

[
1 (1+dk)τ
0 1

]
(41)

is employed, where τ is a constant in unit of time, and dk
varies with time. Note that this kind of systems is commonly
used to describe the “velocity jumps” in moving target track-
ing and the “frequency jumps” in oscillators.

In the first simulation, all the methods were applied in
an ideal environment. That is, all the parameters of system
model, including the variances of noises, are known com-
pletely in the entire estimation process. The model parameter
is set to be dk = 20 if 160 ≤ k ≤ 200 and dk = 0 otherwise.
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Figure 2: Estimation errors for an accurate model: (a) the first state
and (b) the second state.

The variances of process noise wk and measurement noise vk
are σ2

w = 10−4 and σ2
v = 102, respectively. Since the system

model is time-variant, two different optimum horizons were
found following [24] to be Nopt = 60 and Nopt = 15 for the
models with dk = 0 and dk = 20, respectively. For the first
and second states at time k, the estimation error bounds (EBs)
have been respectively calculated as in [14] and employed as
measures of estimation accuracy. The process was simulated
over 400 subsequent points.

The estimation errors are given in Fig. 2. With respect to
the first state, errors in OFIR filter is smaller than in the MVU
FIR and UFIR filters as expected. Note that the OFIR filter is
obtained by minimizing the mean square errors (MSEs), thus
leading to the most accurate estimates. On the other hand,
UFIR and OFIR perform very close to each other and the
difference between them is indistinguishable in Fig. 2. This
is mainly due to the optimal horizon used, which reduces the
variance of estimation error in UFIR automatically. For the
second state, a similar situation is observed; however, FIR
methods are less sensitive to the value of N in this case. It
is also seen that all the FIR filters trace well within a gap
between EB and -EB formed with N = 60.

To show the difference between the errors more clearly,
we conducted another experiment with σ2

w = 10−3 and σ2
v =

10 using a time-invariant model with dk = 0. For polynomial
model, corresponding Nopt for different states can be deter-
mined separately, the root squares of MSEs of the first and
second states are respectively shown in Fig. 3a and Fig. 3b.
A analysis of Fig. 3 leads to several critical inferences:
• The MSEs are concave on N with polynomial model.

When N < Nopt , the denoising effect in all the FIR fil-
ters becomes better with the increase of N. All the FIR
filters offer best estimates at their corresponding optimal
horizons. On the other hand, an increase in N results in
an increase in the estimation bias in UFIR filter, which
can easily be seen in Fig.3 with N > Nopt .
• The errors in MVU FIR filter are intermediate between

the UFIR and OFIR filters. Specifically, the MVU FIR
filter performs better than the UFIR filter but worse than
the optimal one. Another critical peculiarity that still has
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Figure 3: Root square of MSEs as functions of N with σ2
w = 10−3

and σ2
v = 10: (a) the first state and (b) the second state.

not been shown in the literature is that the UFIR filter is
also highly successful in denoising, and it tracks closely
to the MVU FIR filter (the optimized UFIR one), when
N is small. Overall, the MVU FIR filter behaves as the
UFIR filter with small N and as the OFIR filter with large
N.
• By increasing the horizon N, all FIR estimates converge

to the OFIR estimate. In comparison with the UFIR filter,
the rate of convergence of the MVU FIR filter is much
faster, thus leading to smaller optimal horizon.

Note that noise in the UFIR filter is reduced only by the
averaging provided using the estimation horizon N. In the
MVU FIR filter, however, additional optimization operation
is introduced to enhance the effect of noise reduction, even
making the MVU FIR method achieve similar accuracy with
the OFIR filter at the same optimal horizon point.



5. CONCLUSIONS

A MVU FIR filter considered as the optimized UFIR fil-
ter was derived to minimize the variance in the UFIR fil-
ter which ignores the noise statistics. As was expected, the
MVU FIR filter has reduced the random amount of errors
and shown better ability of denoising. Its estimates converge
to the OFIR one by increasing the averaging horizon. The
structure of the MVU FIR filter was shown to be consistent
to the OFIR filter and the MSEs intermediate between the
UFIR and OFIR filters.
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