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ABSTRACT
Recently, we developed pre-image iteration methods for
single-channel speech enhancement. We used objective
quality measures for evaluation. In this paper, we evaluate
the de-noising capabilities of pre-image iterations using an
automatic speech recognizer trained on clean speech data.
In particular, we provide the word recognition accuracy of
the de-noised utterances using white and car noise at 0, 5,
10, and 15 dB signal-to-noise ratio (SNR). Empirical results
show that the utterances processed by pre-image iterations
achieve a consistently better word recognition accuracy for
both noise types and all SNR levels compared to the noisy
data and the utterances processed by the generalized sub-
space speech enhancement method.

Index Terms— Speech enhancement, speech de-noising,
pre-image iterations, automatic speech recognition

1. INTRODUCTION

Speech enhancement is important in the field of speech com-
munications and speech recognition. Many methods have
been developed, including spectral subtraction [1], statisti-
cal model-based methods such as estimators of the short-
time spectral amplitude [2], and subspace methods based on
principal component analysis (PCA) [3, 4]. Recently, we
proposed pre-image iterations (PI) for speech enhancement
which are derived from kernel PCA, the non-linear exten-
sion of PCA [5]. Inspired by subspace methods, a signifi-
cant difference of PI is the use of complex-valued spectral
data as feature vectors. Furthermore, PI exhibit a similar-
ity to non-local filtering, a technique applied for image de-
noising. While many de-noising algorithms often compute
the value of the de-noised pixel solely based on the value of
its surrounding pixels, non-local filters average over pixels
that are located all over the image but have a similar neigh-
borhood. This approach is favorable if images contain repet-
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itive patterns such as textures. Although popular for image
de-noising, non-local filtering has only recently gained atten-
tion in speech enhancement [6].

In this paper, we use automatic speech recognition (ASR)
to evaluate the performance of pre-image iterations. So far,
we have evaluated PI using objective quality measures like
the measures of the PEASS toolbox [7]. While a speech en-
hancement method might show good perceptual speech qual-
ity this does not necessarily mean that intelligibility or word
accuracy of a recognizer are improved [8]. We investigate
how an off-the-shelf recognizer performs on noisy speech
before and after processing by different enhancement algo-
rithms. We realize this by feeding the enhanced utterances
into a pre-trained speech recognizer and by comparing the
word accuracy of unprocessed and enhanced noisy data. The
focus of this paper is strictly on the evaluation of different
enhancement methods and not on optimization of the recog-
nition results. Therefore, the speech recognizer is assumed
to be not tunable and it is not adapted to the enhanced data.

We evaluate two approaches of PI: In the first method,
the tuning parameter c – the variance of the kernel – is set
depending on the SNR [5], which is assumed to be known. In
the second method, c is determined from a mapping function
using a noise estimate. The mapping function is derived from
a development set and maps noise estimates to values of c [9].
This method is favorable when the recordings have different
noise levels. Experiments are performed on speech data cor-
rupted by white and car noise at 0, 5, 10, and 15 dB SNR. As
a benchmark, results for spectral subtraction [1], the gener-
alized subspace method [4], and the minimum mean-square
error (MMSE) log-spectral amplitude estimator [2] are pro-
vided. The word accuracy achieved on the data enhanced
by PI is superior to the word accuracy achieved by the gen-
eralized subspace method, similar to the word accuracy by
spectral subtraction and mostly lower than the accuracy for
the MMSE log-spectral amplitude estimator. The pre-image
iteration methods as well as the MMSE log-spectral ampli-
tude estimator produce fewer artifacts which results in higher
word accuracies especially in low SNR conditions.



The paper is organized as follows: Section 2 introduces
the pre-image iteration methods. In Section 3, the databases
and the recognition system are described. In Section 4, the
results are discussed. Section 5 concludes the paper.

2. PRE-IMAGE ITERATIONS

In [5], we showed that pre-image iterations can be used for
speech enhancement. Pre-image iterations are derived from
kernel PCA, where data samples are transformed to a so-
called feature space for processing. Depending on the kernel
there may be no one-to-one mapping between feature space
and original input space and the sample in input space corre-
sponding to a processed sample in feature space cannot be di-
rectly determined. Therefore, the sample has to be estimated
and the estimate is called pre-image. Several methods have
been proposed to solve the pre-image problem (see [10]).

Pre-image iterations are based on the simplification of
the iterative pre-image method of [11]. In [5], we neglected
the kernel PCA coefficients and de-noising is performed by
iteratively applying
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where ztj is the enhanced sample in input space, t denotes the
iteration step, xi is the ith original noisy sample, M is the
number of noisy samples in one frequency band (see Section
2.1 for further details), and k(·, ·) defines the kernel func-
tion. The feature vectors xi are extracted from the complex
frequency domain representation. For enhancement of one
specific sample xj , z0j is initialized by xj which results in a
robust convergence behavior. When the difference between
zt+1
j and ztj is below a given threshold, the iterations are ter-

minated. Pre-image iterations are equivalent to forming con-
vex combinations of noisy speech samples.

We employ a regularization for pre-image estimation as
proposed in [12]. The corresponding pre-image iteration
equation is
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where λ is the regularization parameter and xj denotes the
noisy sample which is enhanced. We use the Gaussian kernel

k(xi,xj) = exp(−‖xi − xj‖2/c), (3)

where parameter c denotes the variance of the kernel. This
kernel determines the similarity between two data samples
where the variance c scales the similarity and influences the
de-noising performance. The de-noising process is based on
the fact that noise is random and that the feature vectors for
noise are all relatively similar to each other. Consequently,
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Fig. 1. Spectral detail of the clean utterance /t a sh e/. Left hand
side: Extraction of frequency bands with time overlap of 10 patches.
Right hand side: Extraction of 12 × 12 patches from one frequency
band with an overlap of 10 in time and frequency.

the weights for the linear combination estimated by the ker-
nel function are similar and the noise is averaged out (in the
complex spectral domain). Speech components are rather
dissimilar so they are maintained as long as the SNR is not
too low.

2.1. Feature Extraction and Synthesis

The sample vectors xi for pre-image iterations are extracted
from the sequence of short-term Fourier transforms (STFTs)
computed from the speech signal. First the 256-point STFT
is computed from frames of 16 ms. The frames have an over-
lap of 50% and a Hamming window is applied. The resulting
time-frequency representation is split on the time and on the
frequency axis to reduce computational costs (see Figure 1,
left side) which results in so-called frequency bands. Sample
vectors are retrieved from these frequency bands by first ex-
tracting quadratic patches in an overlapping manner, where
the size of each patch is 12 × 12 with an overlap of 11 (see
Figure 1, right side). In previous experiments, windowing
of the patches was beneficial, so a 2D Hamming window is
applied. Then the patches are re-ordered in column-major
order to form the sample vectors xi. The frequency bands
cover a frequency range corresponding to 8 patches (i.e. 19
bins) and a time range corresponding to 20 patches (i.e. 31
bins). Bands are not overlapping along the frequency axis,
along the time axis the overlap is 10 patches. This configu-
ration was chosen due to good empirical results.

After de-noising, the audio signal is re-synthesized by re-
shaping the sample vectors to patches. The patches of all fre-
quency bands belonging to one time segment are rearranged
using the overlap-add method with weighting as in [13] gen-
eralized for the 2D domain. Then the STFT bins of overlap-
ping time segments are averaged, the inverse Fourier trans-
form is applied on the bins of each frame and the audio signal
is synthesized with the weighted overlap-add method [13].



2.2. Automatic Determination of the Kernel Variance

As the performance of the pre-image iterations strongly de-
pends on the kernel variance c, we adapt c for varying noise
conditions and levels. Schemes for determining c directly
from the processed utterance have been proposed in [9]. In
particular, two approaches for additive white Gaussian noise
(AWGN) and colored noise have been developed which are
shortly summarized in the following:

(i) For white noise, a function for mapping the noise
power estimate to a suitable value of c is learned using de-
velopment data. A weighted composition of the four scores
of the PEASS toolbox [7] – overall perceptual score, target
perceptual score, interference perceptual score, and artifact
perceptual score – is used to determine well-performing val-
ues of c for the individual noise levels. The c and noise level
values from development data are fitted by a polynomial of
second order. This function is used for the mapping. The
noise power is estimated at the beginning of the utterance
assuming absence of speech and stationary noise.

(ii) For colored noise, a single value of c for all frequency
bands is insufficient for substantial de-noising. For this rea-
son we derive the averaged noise power estimate for each
frequency band individually. These estimates are used in the
mapping function derived for white noise to obtain values of
c for each frequency band.

3. EXPERIMENTAL FRAMEWORK

3.1. Database Description

The enhancement algorithms are evaluated in terms of ASR
performance using two different databases, the Bavarian
Archive for Speech Signals (BAS) PHONDAT-1 database
[14] for training and the airbone database [10] for testing.

The training corpus consists of 4999 clean utterances of
the BAS PHONDAT-1 database sampled at 16 kHz. These
utterances correspond to 50 speakers resulting in around 100
utterances per speaker and 1504 different words in total.

The test corpus consists of 120 utterances of the airbone
database which are read by six speakers – three male and
three female – of the Austrian variety of German. The num-
ber of tested words is 50 and more than the half of them do
not occur in the training set. The recordings are sampled
at 16 kHz. These utterances are contaminated with two dif-
ferent types of noise, namely white and car noise, at differ-
ent SNRs, i.e., 0, 5, 10, and 15 dB. The car noise is taken
from the NOISEX-92 database [15]. The SNR computation
is based on the active speech level such that only samples
where speech is present are used to estimate the energy of the
signal [16]. A small development set – consisting of two sen-
tences per speaker – is used to determine the SNR-dependent
value of the kernel variance c. The mapping function for es-
timating the kernel variance as described in Section 2.2 is
derived from the same development set.

Condition 0 dB 5 dB 10 dB 15 dB Average
Noisy 0.00 15.56 38.89 65.56 30.00
PI 27.22 53.89 68.33 72.59 57.15
PID 35.93 58.70 72.22 77.59 61.11
Subspace 2.59 4.63 16.30 42.96 16.62
SubspaceMNS 22.96 36.48 46.85 68.89 43.80
SpecSub 25.74 53.15 73.89 85.56 59.59
LogMMSE 37.78 58.15 74.63 89.07 64.91
Clean 97.78

Table 1. WAcc achieved on the noisy data, after enhancement (i)
by pre-image iterations with SNR-dependent setting of the kernel
variance (PI), (ii) by pre-image iterations with automatic determi-
nation of the kernel variance (PID), (iii) by the generalized subspace
method (Subspace), (iv) by the generalized subspace method with
post-processing using musical noise suppression (SubspaceMNS),
(v) by spectral subtraction (SpecSub), and (vi) by the MMSE log-
spectral amplitude estimator (LogMMSE), evaluated on data cor-
rupted by AWGN at 0, 5, 10, and 15 dB SNR.

3.2. Recognition system

The automatic speech recognizer is based on the Hidden
Markov Toolkit (HTK). The front-end (FE) and the back-
end (BE) are both derived from the standard recognizer of
the Aurora-4 database [17]. The FE computes 13 Mel fre-
quency cepstral coefficients (MFCCs) by using a sampling
frequency of 16kHz, a frame shift of 10 ms, and a window
length of 32 ms. Cepstral mean normalization is employed.
Furthermore, delta and delta-delta features are computed
leading to a feature vector of 39 components. For training,
the BE uses a dictionary based on 34 SAMPA-monophones.
The transcriptions in this dictionary are derived from more
detailed transcriptions based on 44 SAMPA-monophones
by clustering less common monophones in the corpus. For
each triphone, a hidden Markov model (HMM) with 6 states
and Gaussian mixture models of 8 components per state is
trained. To reduce the complexity and to overcome the lack
of training data for some triphones, tree-based clustering
based on monophone-classification is applied. With tree-
based clustering also triphone models that have not been
observed in the training data can be created. The grammar
used for training is probabilistically modeled. In contrast
to that, a rule-based grammar is applied for testing as the
utterances of the airbone database obey very strict grammar
rules.

4. RESULTS AND DISCUSSION

Table 1 and 3 show the word accuracy (WAcc) in percent
achieved on the noisy, enhanced, and clean data. The word
accuracy is defined as WAcc = N−S−D−I

N ×100%, whereN
is the number of words, S is the number of substitutions, D
is the number of deletions and I is the number of insertions.



PID 0 dB 5 dB 10 dB 15 dB
Noisy * * * *
Subspace * * * *
SpecSub * -
LogMMSE - - -

Table 2. Results of the statistical significance test between PID and
the reference methods for the WAcc in Table 1. The asterisk indi-
cates a significantly better performance of PID with a significance
level of 0.01, while the minus sign indicates a lower performance.

Table 1 shows the WAcc for pre-image iterations with
SNR-dependent setting of the kernel variance (PI)1 and for
pre-image iterations with automatic determination of the
kernel variance (PID) for AWGN as described in Section
2.2. Table 3 shows the results of pre-image iterations with
frequency-dependent determination of the kernel variance
(PIDF) developed for colored noise. In the presented experi-
ments car noise was used. As a benchmark word accuracies
achieved by the generalized subspace method [4], by spec-
tral subtraction [1], and by the MMSE log-spectral amplitude
estimator [2] are provided.

In addition to the WAcc, we evaluated if the perfor-
mance difference between the pre-image iteration methods
and the reference methods is statistically significant. We
use a matched pairs test as recommended in [18]. For all
evaluations, we employ a significance level of 0.01. Table 2
and 4 show the results of the significance test between the
pre-image iteration methods and the reference methods.

The WAcc for the noisy data clearly states that the rec-
ognizer performance suffers from the noise contamination.
The enhancement based on pre-image iterations successfully
increases the WAcc in comparison to the noisy data. The
WAcc of the pre-image iteration methods is always superior
to the WAcc of the generalized subspace method, similar to
the WAcc of spectral subtraction and mostly lower than the
WAcc of the MMSE log-spectral amplitude estimator. The
superior performance is significant for the generalized sub-
space method, for spectral subtraction at 0 dB SNR and the
noisy data except for 15 dB SNR. The good WAcc of the
pre-image iteration methods constitutes a difference to the re-
sults achieved with objective quality measures such as PESQ,
where the scores of the reference methods are rather slightly
higher than the scores of the pre-image iteration methods
(cf. [10]). The comparison of PI to PID reveals that the PID
method always achieves higher word accuracies. This con-
firms that the automatic determination of the kernel variance
is preferable over using a fixed value for one noise condition.
The results for the experiments with car noise show that this
type of noise is less harmful to the performance of the recog-
nizer. This can be explained by the fact that the noise energy
is concentrated below 1kHz, where the speech components

1One value for c is derived from the development set and applied for all
sentences of one SNR condition.

Condition 0 dB 5 dB 10 dB 15 dB Average
Noisy 1.30 25.93 62.78 85.19 43.80
PIDF 34.95 62.04 81.48 89.26 66.93
Subspace 8.52 27.04 66.85 81.48 45.97
SpecSub 29.26 61.11 79.26 90.74 65.23
LogMMSE 52.78 75.74 86.11 94.07 77.17
Clean 97.78

Table 3. WAcc achieved on the noisy data, after enhancement (i)
by pre-image iterations with frequency-dependent determination of
the kernel variance (PIDF), (ii) by the generalized subspace method
(Subspace), (iii) by spectral subtraction (SpecSub), and (iv) by the
MMSE log-spectral amplitude estimator (LogMMSE), evaluated on
data corrupted by car noise at 0, 5, 10, and 15 dB SNR.

PIDF 0 dB 5 dB 10 dB 15 dB
Noisy * * *
Subspace * * * *
SpecSub *
LogMMSE - - - -

Table 4. Results of the statistical significance test between PIDF
and the reference methods for the WAcc in Table 3. The asterisk
indicates a significantly better performance of PIDF with a signifi-
cance level of 0.01, while the minus sign indicates a lower perfor-
mance.

are relatively strong and the distortion by the noise therefore
is limited.

Listening to the utterances processed by the generalized
subspace method and by spectral subtraction reveals that mu-
sical noise is very prominent. The utterances enhanced by the
pre-image iteration methods and the MMSE log-spectral am-
plitude estimator are less affected by such artifacts. This ex-
plains the better performance of pre-image iteration methods
and the MMSE log-spectral amplitude estimator especially
in low SNR conditions. To test the hypothesis that musi-
cal noise is problematic for the speech recognizer we further
evaluated the WAcc on data corrupted by AWGN, enhanced
by the generalized subspace method and subsequently post-
processed by the musical noise suppression (MNS) method
proposed in [10]. The results are included in Table 1 and de-
noted as SubspaceMNS. The WAcc is much better after the
MNS and the performance difference is significant. Hence,
the musical noise is indeed a problem for the recognizer and
speech enhancement methods introducing too many artifacts
may be counterproductive, as shown for the generalized sub-
space method, where the WAcc is even lower than the WAcc
for the noisy data.

Finally the high WAcc on clean data suggests that the rec-
ognizer trained on the BAS database generalizes well to the
test data of the airbone database, although the speakers have
different accents (German and Austrian) and the vocabulary
is not entirely the same.



5. CONCLUSION

Pre-image iterations have been shown to be useful for speech
de-noising. So far, they have only been evaluated by objec-
tive quality measures and by informal listening tests [5, 9].
In this paper, we evaluated the performance achieved by an
automatic speech recognizer tested on speech utterances cor-
rupted by noise and subsequently enhanced by the pre-image
iteration method. Furthermore, results after enhancement
by the generalized subspace method, by spectral subtraction,
and by the MMSE log-spectral amplitude estimator are pre-
sented. The speech recognizer is trained on clean data and
is not adapted to the data used for the enhancement exper-
iments. This way, the effects of testing noise contaminated
and subsequently enhanced data can optimally be analyzed.

Experiments were performed on data corrupted by addi-
tive white Gaussian noise and by car noise at 0, 5, 10, and 15
dB SNR. The data enhanced by pre-image iterations results
in higher word accuracies compared to noisy data. The WAcc
of the PI methods is superior to the WAcc of the generalized
subspace method, similar to the WAcc of spectral subtraction
and mostly lower than the WAcc of the MMSE log-spectral
amplitude estimator. The enhancement methods produce dif-
ferent types of artifacts that affect the speech recognizer dif-
ferently. The generalized subspace method and spectral sub-
traction produce musical noise which decreases the WAcc es-
pecially in low SNRs. The conjecture that musical noise is a
major impairment for the speech recognizer is confirmed in a
further experiment where the WAcc of enhanced data is com-
pared to enhanced data subsequently processed by a musical
noise suppression algorithm. The WAcc after musical noise
suppression is higher than the WAcc of the data only pro-
cessed by the speech enhancement algorithm. This means
that the attenuation of musical noise improves the recogni-
tion performance.

In future, we would like to extend the pre-image itera-
tion method by a noise tracker to generalize the method from
stationary noise to other noise types such as babble noise.

REFERENCES

[1] M. Berouti, M. Schwartz, and J. Makhoul, “Enhance-
ment of speech corrupted by acoustic noise,” IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 208–211, 1979.

[2] Y. Ephraim and D. Malah, “Speech enhancement us-
ing a minimum mean-square error log-spectral ampli-
tude estimator,” IEEE Trans. on Acoustics, Speech and
Signal Processing, vol. 33, no. 2, pp. 443 – 445, 1985.

[3] Y. Ephraim and H. L. Van Trees, “A signal subspace
approach for speech enhancement,” IEEE Transactions
on Speech and Audio Processing, vol. 3, no. 4, pp. 251–
266, 1995.

[4] Y. Hu and P. C. Loizou, “A generalized subspace
approach for enhancing speech corrupted by colored

noise,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 11, pp. 334–341, 2003.

[5] C. Leitner and F. Pernkopf, “Speech enhancement us-
ing pre-image iterations,” International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pp. 4665–4668, 2012.

[6] R. Talmon, I. Cohen, and S. Gannot, “Transient
noise reduction using nonlocal diffusion filters,” IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, vol. 19, no. 6, pp. 1584–1599, 2011.

[7] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann,
“Subjective and objective quality assessment of au-
dio source separation,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 7, pp.
2046–2057, 2011.

[8] P. C. Loizou, Speech Enhancement: Theory and Prac-
tice, CRC, 2007.

[9] C. Leitner and F. Pernkopf, “Generalization of pre-
image iterations for speech enhancement,” Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7010–7014, 2013.

[10] C. Leitner, Kernel PCA and Pre-Image Iterations for
Speech Enhancement, Ph.D. thesis, Graz University of
Technology, 2013.

[11] S. Mika, B. Schölkopf, A. Smola, K.-R. Müller,
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