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ABSTRACT

Joint analysis of data from multiple sources has proved useful
in many disciplines including metabolomics and social net-
work analysis. However, data fusion remains a challenging
task in need of data mining tools that can capture the under-
lying structures from multi-relational and heterogeneous data
sources. In order to address this challenge, data fusion has
been formulated as a coupled matrix and tensor factorization
(CMTF) problem. Coupled factorization problems have com-
monly been solved using alternating methods and, recently,
unconstrained all-at-once optimization algorithms. In this pa-
per, unlike previous studies, in order to have a flexible model-
ing framework, we use a general-purpose optimization solver
that solves for all factor matrices simultaneously and is capa-
ble of handling additional linear/nonlinear constraints with a
nonlinear objective function. We formulate CMTF as a con-
strained optimization problem and develop accurate models
more robust to overfactoring. The effectiveness of the pro-
posed modeling/algorithmic framework is demonstrated on
simulated and real data.

Index Terms— data fusion, tensor factorizations, nonlin-
ear optimization, nonlinear constraints, SNOPT.

1. INTRODUCTION

In many domains, data from complementary information
sources are collected. For instance, in metabolomics, with
a goal of finding biomarkers, biofluids such as blood or
urine are studied using complementary analytical techniques
including LC-MS (Liquid Chromatography - Mass Spectrom-
etry) and NMR (Nuclear Magnetic Resonance) spectroscopy
[1]. In recommendation systems, in order to recommend
activities at certain locations, in addition to users’ previous
activities, information such as points of interest at each loca-
tion or user similarities based on social network data are also
collected [2]. Joint analysis of data from such complementary
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sources has proved useful in terms of missing data estima-
tion [2, 3, 4], clustering performance [4], and improving the
understanding of the underlying biological processes [5].

However, analysis of data from multiple sources often
needs to deal with multi-relational data of different orders,
e.g., in the form of matrices and higher-order tensors (Fig-
ure 1), and with shared and unshared factors. Joint analysis
of such data sets is challenging, especially when the goal is to
capture the underlying structures. For instance, metabolomics
applications require underlying factors to be captured accu-
rately and uniquely so that extracted factors can be used fur-
ther to identify biomarkers corresponding to a problem of in-
terest, e.g., a specific type of diet or a disease.

Coupled factorization methods have emerged as an effec-
tive tool for joint analysis of multiple data sets. While earlier
studies focused on factorization of multiple data sets in the
form of matrices [5, 6], in order to deal with heterogeneous
data sets (i.e., in the form of matrices and higher-order ten-
sors), coupled matrix and tensor factorization (CMTF) meth-
ods have been developed [2, 3, 4, 7, 8]. Joint factorization
of a third-order tensor X ∈ RI×J×K , coupled with a matrix
Y ∈ RI×M , can be formulated as

f(A,B,C,V) = ‖X− JA,B,CK ‖2 + ‖Y −AVT ‖2 , (1)

where tensor X and matrix Y are factorized through the mini-
mization of (1), which fits a CANDECOMP/PARAFAC (CP)
[9, 10] model to X and factorizes Y in such a way that the
factor matrix corresponding to the common mode, namely
A ∈ RI×R, is the same. Here, ‖ . ‖ denotes the Frobenius
norm. B ∈ RJ×R and C ∈ RK×R are factor matrices cor-
responding to the second and third modes of X, and V ∈
RM×R corresponds to the second mode of Y. We use the
notation X = JA,B,CK to denote the CP model, which rep-
resents a higher-order tensor as a sum of rank-one tensors,
i.e., X =

∑R
r=1 ar ◦br ◦cr, where ◦ denotes the vector outer

product. Coupled matrix and tensor factorization models have
been extended to tensor factorizations other than CP [3] and
to different loss functions [3, 8]. Here, we focus on CMTF
models using CP for modeling higher-order tensors and the
squared Frobenius norm as the loss function.

Depending on the application, the CMTF formulation (1)



Fig. 1: A third-order tensor of fluorescence measurements
coupled with a matrix representing the NMR measurements.

may need to incorporate constraints. For instance, nonnega-
tivity constraints are used to build easily-interpretable models
[8], and certain formulations of CMTF require unit norm
constraints on the columns of the factor matrices to capture
explicitly the weights of rank-one components in each data
set [11]. The traditional approach for fitting CMTF mod-
els is to use alternating algorithms minimizing the objective
function for one factor matrix at a time with the others fixed
[6]. Alternating methods have been the workhorse for fitting
tensor models as well because of the ease of implementa-
tion. However, nonlinear optimization methods solving for
all factor matrices simultaneously have proved to outperform
alternating least squares for fitting a CP model [12, 13, 14].
A potential limitation of all-at-once optimization approaches
is that they are not flexible in terms of imposing constraints.
Therefore, in this paper, we study the use of a general-purpose
optimization solver SNOPT (Sparse Nonlinear OPTimizer)
[15] to solve for all factor matrices simultaneously while
handling a nonlinear objective function and additional lin-
ear/nonlinear constraints. We formulate CMTF as a con-
strained optimization problem and demonstrate that the op-
timizer can be used to develop accurate data fusion models.
For instance, by imposing angular constraints, we develop
CMTF models that are more robust to overfactoring, i.e., less
likely to extract a spurious extra component that is not in
any of the data sets. Using numerical experiments on both
simulated and real data, we demonstrate the effectiveness of
the proposed modeling/algorithmic framework.

2. COUPLED MATRIX AND TENSOR
FACTORIZATIONS

Coupled factorizations of heterogeneous data have been orig-
inally formulated as in (1) [2, 3, 7]. Algorithmic approaches
for minimizing (1) rely on either alternating algorithms or un-
constrained first-order optimization methods.

While the CMTF formulation (1) can accurately capture
the underlying structures in coupled data sets when all factors
are shared across data sets [7], it may fail to capture the un-
derlying factors uniquely in the presence of both shared and
unshared components [11]. Therefore, in order to identify
shared/unshared factors in coupled data sets, CMTF has been

reformulated as follows [11]:

f(λ,Σ,A,B,C,V)

= ‖X− Jλ;A,B,CK ‖2 + ‖Y −AΣVT ‖2

+ γ ‖λ ‖1 + γ ‖σ ‖1 ,
(2)

where the columns of factor matrices have unit norm, i.e.,
‖ar ‖ = ‖br ‖ = ‖ cr ‖ = ‖vr ‖ = 1 for r = 1, . . . , R,
and λ ∈ RR×1 and σ ∈ RR×1 are the weights of rank-one
components in the third-order tensor and the matrix, respec-
tively. Σ ∈ RR×R is a diagonal matrix with entries of σ
on the diagonal. ‖ . ‖1 denotes the 1-norm of a vector, i.e.,
‖x ‖1 =

∑R
r=1 |xr|, and γ > 0 is a penalty parameter. This

formulation sparsifies the weights through the 1-norm penal-
ties so that unshared factors are expected to have weights
equal to 0 in some data sets. In [11] the model is fitted to data
by adding the norm constraints as quadratic penalty terms to
the objective, replacing the 1-norm terms with differentiable
approximations, i.e., for sufficiently small ε > 0,

√
x2i + ε =

|xi|, and minimizing the objective function using a nonlinear
conjugate gradient method. The reformulated CMTF model,
called the structure-revealing data fusion model, has been ef-
fective in terms of identifying shared/unshared factors. How-
ever, the unconstrained optimization approach lacks the flex-
ibility to incorporate additional constraints.

3. CMTF USING CONSTRAINED OPTIMIZATION

In this section, we formulate the structure-revealing CMTF
model [11] as a constrained optimization problem and discuss
its extensions by imposing various constraints. More specif-
ically, we add (i) nonnegativity constraints on the factor ma-
trices in order to extract interpretable factors, and (ii) angular
constraints to build CMTF models robust to overfactoring.

The structure-revealing data fusion model in (2) can be
formulated as a constrained optimization problem as in (3).
Here, we make use of the fact that weights of rank-one com-
ponents, i.e., λr and σr, are nonnegative; therefore, instead of
the 1-norm penalty terms in (2), we have nonnegativity con-
straints on λr, σr for r = 1, . . . , R, and upper bounds on the
summations.

min
A,B,C,V,Σ,λ

‖X− Jλ;A,B,CK ‖2 + ‖Y −AΣVT ‖2

s.t. ‖ar‖2 = ‖br‖2 = ‖cr‖2 = ‖vr‖2 = 1,

R∑
r=1

λr ≤ β,
R∑
r=1

σr ≤ β,

σr, λr ≥ 0 for r = 1, . . . , R,

(3)

where β > 0 is a user-defined parameter. This formulation
jointly factorizes heterogeneous data sets, and the linear con-
straints sparsify the weights to reveal shared/unshared factors.

3.1. Additional Constraints

Additional constraints are needed in many data fusion prob-
lems. For instance, nonnegativity constraints are used to im-



prove the interpretability of the models or incorporate prior
knowledge. Coupled data sets in Figure 1 can be jointly an-
alyzed using CMTF to capture the chemicals visible to each
data set. Spectral profiles are nonnegative, and when captured
accurately, they can be used to identify individual chemicals
in mixtures. To incorporate such prior knowledge, we can en-
force nonnegativity constraints on the factor matrices in (3),
e.g., bjr ≥ 0, for r = 1, . . . , R, j = 1, . . . , J .

Another type of constraint also proves useful, for data
fusion models in the case of overfactoring. When coupled
data sets are overfactored, a shared factor may be represented
by two closely-correlated factors; therefore, the structure-
revealing CMTF model fails to identify shared factors accu-
rately. To tackle this problem, we introduce constraints on the
angle between the columns of the factor matrices, as follows:

min
A,B,C,V,Σ,λ

‖X− Jλ;A,B,CK ‖2 + ‖Y −AΣVT ‖2

s.t. ‖ar‖2 = ‖br‖2 = ‖cr‖2 = ‖vr‖2 = 1,

|aT
rap| ≤ θ, |bT

rbp| ≤ θ, |cT
rcp| ≤ θ, |vT

rvp| ≤ θ,
R∑
r=1

λr ≤ β,
R∑
r=1

σr ≤ β,

σr, λr ≥ 0 for r, p ∈ {1, . . . , R}, r 6= p,

(4)

where β > 0 and 0 ≤ θ ≤ 1 are user-defined parameters. An-
gular constraints prevent two factors from being similar and
cause the extra factor to get zero weights (λr = σr = 0), in-
dicating that coupled data sets are overfactored. These types
of angular constraints have also been used to deal with the
non-existence of the CP model [16]. Previously, overfactor-
ing has been studied for CP models, showing that all-at-once
optimization methods are more robust to overfactoring than
alternating least squares [12, 13]. Overfactoring has also been
studied for the CMTF formulation (1) [7]. However, these
studies focus on comparisons of algorithms rather than im-
proving the models to make them robust to overfactoring.

3.2. SNOPT

We solve the CMTF problems in Section 3 using SNOPT
[15], which is designed for large constrained optimization
problems with smooth nonlinear functions in the objective
and constraints. SNOPT uses a sequential quadratic program-
ming (SQP) algorithm to minimize an augmented Lagrangian.
The sequence of QP subproblems involve linearized con-
straints and limited-memory quasi-Newton approximations
to the Hessian of the Lagrangian. In our experiments, we
run SNOPT 7 on MATLAB 8.1. We provide function and
gradient values for the objective and constraints as MATLAB
functions.

4. EXPERIMENTS

In this section, using experiments on simulated data, we
demonstrate that the constrained optimization approach is

successful in terms of capturing shared/unshared components
in heterogeneous data sets. We also use the proposed CMTF
models for jointly analyzing fluorescence spectroscopic and
NMR measurements of mixtures with known chemical com-
position and show that individual chemicals in the mixtures
can be accurately captured even in the case of overfactoring.

4.1. Simulated Data

We generate factor matrices A ∈ RI×R,B ∈ RJ×R,C ∈
RK×R, V ∈ RM×R with entries randomly drawn from the
standard normal distribution and columns normalized to unit
norm. Here, we set I = 50, J = 30,K = 40 and M = 20.
The factor matrices are used to construct a third-order ten-
sor X = Jλ;A,B,CK coupled with a matrix Y = AΣVT,
where λ and diagonal entries of diagonal matrix Σ, i.e., σ, of
length R, correspond to the weights of rank-one third-order
tensors and matrices, respectively. As the test problem, we
study the case with one shared and one unshared component
in each data set, i.e., λ = [1 0 1]T and σ = [1 1 0]T. This
setting is a challenging case, for which the original CMTF
formulation (1) fails to capture the underlying factors [11].
A small amount of Gaussian noise is added to data sets. We
jointly factorize these coupled data sets using CMTF formula-
tions with various constraints for different number of factors
to study the effect of constraints. Similarly, we generate factor
matrices with entries randomly drawn from the standard uni-
form distribution and construct coupled data using the same
structure discussed above to show the effect of constraints to-
gether with nonnegativity constraints on the factors.

Experiments demonstrate that the CMTF model formu-
lated as a constrained optimization problem (4) can iden-
tify the true underlying structures in coupled data with
shared/unshared factors even in the case of overfactoring.
Figure 2 demonstrates the performance of CMTF models for
(a) R = 3 with no constraints on weight sums in (3), (b)
R = 3 with β = 1 in (3), (c) R = 4 with β = 1 in (3), and
(d) R = 4 with β = 1, θ = 0.25 in (4). Top plots show
the estimated weights of rank-one components in each data
set, i.e., λ and σ, for the runs returning the same function
value.1 While the model fails to identify shared/unshared
components without the constraints on sums of weights (Fig-
ure 2(a)), the true underlying structure can be captured using
those linear constraints (Figure 2(b)). Bottom plots show how
well the extracted factors match the true columns of A. Let
âr be the rth column of the factor matrix extracted from the
shared mode. “Match score” corresponds to âT

rar

‖ âr ‖‖ ar ‖ for
the best matching permutation of the columns. We observe
that underlying factors can be captured accurately in Figure
2(b). In the case of overfactoring, i.e., R = 4, we expect
to capture one component with λr = σr = 0. In Figure

1The minimum function value satisfying the constraints is obtained a
number of times using random starts. Two function values are considered
to be the same when the difference between them is less than 10−6.



(a) R = 3 (b) R = 3, β = 1 (c) R = 4, β = 1 (d) R = 4, β = 1, θ = 0.25

Fig. 2: Performance of CMTF models with various constraints.

(a) R = 3 (b) R = 4 (c) R = 4, β = 1 (d) R = 4, β = 1, θ = 0.8

Fig. 3: Performance of CMTF models with various constraints in addition to nonnegativity constraints on factor matrices.

2(c), even with the constraints on sums of weights, the model
fails to identify shared/unshared components. On the other
hand, angular constraints enable recovery of the true structure
(Figure 2(d)). Note that the extra component has a low match
score in Figure 2(d). Here, θ is determined from the inner
products of normalized vectors of given lengths with random
entries from the standard normal distribution.

We also carry out experiments on coupled data sets
with nonnegative factors. In Figure 3(a), we observe that
shared/unshared factors can be successfully identified using
only nonnegativity constraints on the factors. However, Fig-
ure 3(b) shows that nonnegativity constraints alone cannot
deal with the overfactoring problem. Note that match scores
for all extracted factors are close to 1, indicating that the
extra component models one of the true factors. The CMTF
formulation in (3) for β = 1 together with nonnegativity
constraints also fails to identify the true underlying structure
(Figure 3(c)). On the other hand, angular constraints enable
identification of the true structure in Figure 3(d). Here, a
higher θ value is used because entries of the factor matri-
ces are drawn from the standard uniform distribution. The
models depend heavily on the choice of β, especially in the
case of overfactoring. Small β values sparsify the weights a
lot, while higher values make the constraints ineffective. As
we increase the component number, β is also increased (see
next section), but determining the right β value remains a
challenge.

4.2. Real Data

We use the proposed modeling framework for jointly an-
alyzing fluorescence and NMR measurements of 12 mix-
tures containing four chemicals: Valine-Tyrosine-Valine
(VTV), Tryptophan-Glycine (TG), Phenylalanine (Phe), and
Propanol. These mixtures are from a larger data set described
in detail on www.models.life.ku.dk/joda/prototype. Fluores-
cence measurements form a third-order tensor with modes:
mixtures, emission and excitation wavelengths, and NMR is
in the form of a mixtures by chemical shifts matrix2 (Fig-
ure 1). While all chemicals are visible to NMR, propanol
does not show up in fluorescence.

Figure 4 demonstrates that when these data sets are jointly
factorized using CMTF with constraints (4), three shared and
one unshared chemicals can be identified even in the case of
overfactoring. A 5-component CMTF model reveals a com-
ponent with zero weights in each data set, i.e., λ1 = σ1 = 0,
indicating that data sets are overfactored. Furthermore, the
component modeling propanol only shows up in NMR. Fig-
ure 4 also shows the factor matrix columns, which capture
the relative concentrations of the chemicals in mixtures. We
observe that extracted factors (in red) match the true design
(blue). Here, a CMTF model with nonnegativity constraints
on all factor matrices is used with β = 1.25 and θ = 0.8. The
extracted factors representing fluorescence (emission and ex-

2Single gradient level from diffusion NMR data is used in this study.



Fig. 4: Weights and scores captured by joint analysis of fluo-
rescence and NMR using CMTF.

citation) and NMR spectra are very similar to the known spec-
tra of the individual chemicals. Comfortingly small distor-
tions were seen even for overfactored models, and for models
with the correct number of factors the signatures were virtu-
ally identical to the known spectra.

5. CONCLUSIONS

Coupled factorization of heterogeneous data sets has been
an effective approach for data fusion. In this paper, we have
formulated coupled matrix and tensor factorizations as con-
strained optimization problems. In order to have a flexible
modeling framework, we have used a general-purpose op-
timization solver SNOPT capable of handling both linear
and nonlinear constraints with a nonlinear objective. Nu-
merical results on simulated and real data demonstrate that
the proposed modeling/algorithmic approach is effective in
terms of building accurate data fusion models. Our focus
has been limited to modeling flexibility and accuracy rather
than computational efficiency, which we plan to address in
future studies. Furthermore, we need a better understanding
of the uniqueness properties of coupled matrix and tensor
factorization models.
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