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ABSTRACT
Phase-only beamforming is used in radar and communication
systems due to its certain advantages. Antenna selection be-
comes an important problem as the number of antennas be-
comes larger than the number of transmit-receive chains. In
this paper, discrete single group multicast transmit phase-only
beamformer design with antenna subset selection is consi-
dered. The problem is converted into linear form and solved
efficiently by using mixed integer linear programming to find
the optimum subset of antennas and beamformer coefficients.
Several simulations are done and it is shown that the pro-
posed approach is an effective and efficient method of sub-
array transmit beamformer design.

Index Terms— Transmit beamformer, discrete beam-
former, mixed integer linear programming, antenna selection

1. INTRODUCTION

Large antenna arrays become cheaper and more feasible with
the advances on fabrication techniques. In modern radar and
communication systems, there are more antennas than the
transmit-receive chains. As a result, transmit antenna selec-
tion for the most appropriate antenna subarray is an important
problem [1], [2].

Practical radar [3] and communication systems [4], [5]
hardware is composed of discrete phase shifters for transmit-
receive beamforming. Phase-only transmission has certain
advantages [3], [6], [7], [8], [9]. Current state of the art for
discrete-phase transmit beamforming discretizes the known
beamforming coefficients or uses iterative schemes for dis-
crete solutions [4], [5], [6], [7]. These discrete beamformers
are far from optimum in terms of maximum transmit power
to users.

In single group multicast beamforming, a common sig-
nal is transmitted to a pool of N users each equipped with
a single antenna while the transmitter is composed of an an-
tenna array [10]. The problem is treated in several previous
works [10], [11] where suboptimum solutions are found for
continuous amplitude and phase beamformers. In this paper,
the design of optimum discrete-phase transmit beamformer
with antenna selection is considered. Proposed method se-

lects the best L out of M antennas and finds the optimum
phase-only transmit beamformer coefficients in a joint man-
ner using branch and cut technique. In some previous pa-
pers, optimum discrete phase-only [12] and optimum discrete
phase amplitude [13] transmit beamformer designs are con-
sidered. This paper extends the work in [12] by including
antenna selection into the problem. Max-min fair transmit
beamformer design with antenna selection problem is con-
verted to linear form for effective solution using mixed inte-
ger linear programming. While the worst case complexity of
this method is exponential when all the possible branches are
expanded, it is significantly lower than the brute force search
in practice due to the fact that solution is usually found before
the full tree expansion. This point is further elaborated in-
side the paper. To our knowledge, this paper is the first work
which presents the optimum solution to the aforementioned
problem described above.

2. SYSTEM MODEL

In single group multicast beamforming, it is assumed that a
base station equipped with M transmit antennas transmits a
common signal to N receivers, each having a single antenna.
The transmitted signal can be written as,

x(t) = s(t)w (1)

where s(t) is the source signal and w is the M × 1 complex
beamformer weight vector. The received signal at the kth re-
ceiver is given as,

yk(t) = hHk x(t) + nk(t) k = 1, . . . N (2)

where hk is the M × 1 complex channel vector for the kth

receiver and nk is additive noise uncorrelated with the source
signal and its variance is σ2

k. Signal-to-noise ratio (SNR) for
the kth receiver is,

SNRk =
σ2
s |wHhk|2

σ2
k

(3)

where σ2
s is the source signal variance. σ2

s = 1 is selected
without loss of generality throughout the paper.

In phase-only single group multicast beamforming max-
min problem, beamforming vector, w, is chosen to maximize



the minimum transmitted power to any user. Suppose that
only L out ofM antennas can be transmitting simultaneously.
In this case, the goal is to select the best L antennas and find
the corresponding beamforming vector. Considering Pan as
the per-antenna power, the problem can be written as follows,

max
w∈CM

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N (4)

(wwH)i,i ∈ {0, Pan} i = 1, ...,M

wHw = LPan

where γk is the power proportion for the kth receiver and t is
the max-min parameter corresponding to the min{SNRk

γk
}.

Rk = E{hkhHk } is the correlation matrix of the channel
vector. Solving the above problem requires a combinatorial
search over all

(
M
L

)
NP hard problems. In the following part,

we consider the discrete version of this problem and find the
optimum solution using mixed integer linear programming
with moderate complexity with branch and cut strategy.

3. DISCRETE PROBLEM
In [12], an optimum solution for the max-min style phase-
only single group multicast problem without antenna selec-
tion is obtained when the phase angles of the beamformer are
selected from a discrete set. In this paper, optimum solution
is found when the antenna selection is added to the problem.
The problem in (4) can be written for the discrete phase as,

max
ψi,αi

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N

αi ∈ {0, 1} i = 1, ...,M (5)
M∑
i=1

αi = L

ψi ∈ {0,∆θ, 2∆θ, ..., (2n − 1)∆θ}, ∆θ =
360◦

2n

where ith element of the beamformer vector w is wi =
αi
√
Pane

jψi and ψi is the discrete phase with n bits. αi is
the antenna selection coefficient. ∆θ is the discrete step size
for phase. Since Rk is a Hermitian symmetric matrix, the
inequality in (5) can be expressed as,

M−1∑
i=1

M∑
p=i+1

2αiαp|Rk(i, p)|cos(∠Rk(i, p) + ψp − ψi)+

M∑
i=1

α2
iRk(i, i) ≥ tγkσ

2
k

Pan
, k = 1, ..., N (6)

The inequality in (6) can be simplified further if additional
variables βi,p and µi,p are defined as,

βi,p = −ψi + ψp µi,p = αiαp,

i = 1, 2, ...,M − 1, p = i+ 1, ...,M

Using the trigonometric identity, the optimization problem
can be written as,

max
ψi,αi,βi,p,µi,p

t

s.t.

M−1∑
i=1

M∑
p=i+1

2µi,p|Rk(i, p)|[cos(∠Rk(i, p))cosβi,p

−sin(∠Rk(i, p))sinβi,p] +

M∑
i=1

α2
iRk(i, i)

≥ tγkσ
2
k

Pan
, k = 1, ..., N (7)

ψi ∈ {0,∆θ, 2∆θ, ...(2n − 1)∆θ}, ∆θ =
360◦

2n

αi ∈ { 0, 1 },
βi,p = −ψi + ψp (8)
µi,p = αiαp, (9)

i = 1, 2, ...,M − 1, p = i+ 1, ...,M

M∑
i=1

αi = L (10)

The above problem setting is not linear. In the following
section, the above problem is converted into linear form.

4. DISCRETE OPTIMIZATION IN LINEAR FORM
Let the first part of the left hand side of the inequality in (7)
be represented as A. A can be expressed in linear form by
using some known vectors c and s. c and s are composed
of all possible cosβi,p and sinβi,p terms and “0” corresponds
to a term related to the antenna selection which nullifies the
corresponding element in the beamformer weight vector w,
i.e.,
c = [ 0 , cos(0 ·∆θ) , cos(1 ·∆θ), ... , cos((2n − 1) ·∆θ)]T

s = [ 0 , sin(0 ·∆θ) , sin(1 ·∆θ), ... , sin((2n − 1) ·∆θ)]T

In order to access each term in A, indicator vectors ui,p
whose elements are all zero except a single element are de-
fined. ui,p’s are the new variables of the optimization.

A in (7) can be expressed in terms of ui,p as,

A =

M−1∑
i=1

M∑
p=i+1

2|Rk(i, p)|[cos(∠Rk(i, p))cT

−sin(∠Rk(i, p))sT ] · ui,p (11)

Note that ui,p(1) and µi,p are complements of each other
as binary variables described as in Table 1. The relationship
between ui,p vectors should be established and used during
the optimization. Such relationships can be established over
binary indicator vectors, vi. (2n+1)×1 vector, vi, carries the
phase and amplitude information of the beamformer vector.
The first element of ui,p and vi, namely ui,p(1) and vi(1) are
the antenna selection parameters. vi(1) is the complement of
αi as given in Table 1.



Once ui,p and vi indicator vectors are defined, it is pos-
sible to write (8) in terms of these vectors. First (8) is norma-
lized by ∆θ, then

βi,p
∆θ

=
−ψi
∆θ

+
ψp
∆θ

(12)

The above expression can be written as,

dT · ui,p = dT · (−vi + vp) (mod 2n) (13)

where d = [ 0 , 0 , 1 , 2 , ... , (2n − 1) ]T . Note that the first
zero in d is for the antenna selection and the second one is
for zero phase (0 ·∆θ). dT · ui,p is always nonnegative and
modulo operation on the right hand side ensures the equal-
ity. Modulo operation can be removed if an additional binary
variable ai,p is used, i.e.,

dT · ui,p = dT · (−vi + vp) + ai,p2
n (14)

Note that (14) is defined when ith and pth antennas are used
simultaneously. For the other cases of antenna existences, (ex:
ith antenna does not exists), equation (14) can be still made
valid if an additional variable bi,p ≥ 0 is added to the left
hand side of equation (14). In this case, the right hand side of
(14) is always positive and dT · ui,p = 0 requiring a positive
bi,p to satisfy the equality, i.e.,

dT · ui,p + bi,p = dT · (−vi + vp) + ai,p2
n (15)

Note that (15) is more comprehensive form of linear expres-
sion in (8).

4.1. Final Form of the Discrete Problem
The final variable of optimization, t, corresponds to the
min{SNRk

γk
} and hence it is real and positive, i.e., t ∈ R+.

Furthermore all the expressions in (16-22) are linear. There-
fore the problem can be solved using mixed integer linear
programming [14]. The new optimization problem can be
written as,

max
vi,ui,p,ai,p,bi,p

t

s.t.

M−1∑
i=1

M∑
p=i+1

2|Rk(i, p)|[cos(∠Rk(i, p))cT

−sin(∠Rk(i, p))sT ] · ui,p +

M∑
i=1

(1− vi(1))Rk(i, i)

≥ tγkσ
2
k

Pan
k = 1, ..., N (16)

dT · ui,p + bi,p = dT · (−vi + vp) + ai,p2
n (17)

ai,p ∈ {0, 1} (18)
bi,p ≥ 0 (19)

bi,p + 2n(1− ui,p(1)) ≤ 2n (20)
−1 ≤ vi(1) + vp(1)− 2ui,p(1) ≤ 0 (21)

Table 1.
αi αp µi,p vi(1) vp(1) ui,p(1) bi,p
0 0 0 1 1 1 ≥ 0
0 1 0 1 0 1 ≥ 0
1 0 0 0 1 1 ≥ 0
1 1 1 0 0 0 0

M∑
i=1

vi(1) = M − L (22)

i = 1, 2, ...,M − 1, p = i+ 1, ...,M

vi(k), ui,p(k) ∈ {0, 1},
2n+1∑
k=1

vi(k) = 1,

2n+1∑
k=1

ui,p(k) = 1.

The expression in (16) stands for (7) in the previous section.
The expressions (17), (18), (19) and (20) are for (8) where
ai,p and bi,p are the additional variables to make (17) valid
for all cases including the case when any one of the antennas
is not selected. (19) and (20) guarantees that bi,p is 0 when ith

and pth antennas are selected in accordance with Table 1. (21)
is used for the antenna selection as in (9) and it realizes the
Table 1. Note that (21) is an inequality over binary variables
to realize (9). (22) stands for (10) and it shows the number of
selected antennas.

The problem in (16-22) is always feasible and the global
optimum can be found using mixed integer linear program-
ming [15], [16], [17] with branch and cut technique. Once the
solution for vi’s are found, the phase angles and the antenna
selection coefficients of the beamformer vector are obtained
as,

ψi = fTψ vi, αi = 1− vi(1) i = 1, ...,M (23)

where fψ = [ 0 , 0 ,∆θ , ... , (2n − 1)∆θ ]T = ∆θd.
The following example shows the structure of ui,p and

vi vectors as well as their interrelations. The construction of
(17) is also elaborated in this example.

Example: Let M = 3, n = 2 (∆θ = 90◦) and the beam-
former weight vector be w = [ 0 ej180

◦
ej90

◦
]T , i.e., the first

antenna is not used. In this case, αi’s are given as α1 = 0,
α2 = 1, and α3 = 1 respectively. ψ2 = 180◦ and ψ3 = 90◦.
Then vi vectors are;

v1 = [ 1︸︷︷︸
=1−α1

0︸︷︷︸
0◦

0︸︷︷︸
90◦

0︸︷︷︸
180◦

0︸︷︷︸
270◦

]T

v2 = [ 0︸︷︷︸
=1−α2

0︸︷︷︸
0◦

0︸︷︷︸
90◦

1︸︷︷︸
ψ2=180◦

0︸︷︷︸
270◦

]T

v3 = [ 0︸︷︷︸
=1−α3

0︸︷︷︸
0◦

1︸︷︷︸
ψ3=90◦

0︸︷︷︸
180◦

0︸︷︷︸
270◦

]T

Since the first antenna is not used µi,p’s are given as µ1,2 =
µ1,3 = 0 and µ2,3 = 1. β2,3 is β2,3 = −ψ2 + ψ3 = −90◦ =



270◦. Then ui,p vectors are;

u1,2 = u1,3 = [ 1︸︷︷︸
=1−µi,p

0︸︷︷︸
0◦

0︸︷︷︸
90◦

0︸︷︷︸
180◦

0︸︷︷︸
270◦

]T

u2,3 = [ 0︸︷︷︸
=1−µ2,3

0︸︷︷︸
0◦

0︸︷︷︸
90◦

0︸︷︷︸
180◦

1︸︷︷︸
β2,3=270◦

]T

d is given as d = [ 0 , 0 , 1 , 2 , 3 ]T . Then (17) for i = 2, p =
3 is,

dT · u2,3 + b2,3 = dT · (−v2 + v3) + a2,322 (24)

In the above expression dT · (−v2 + v3) is negative and a2,3
should be 1 in order to have the equality with the positive right
hand side. Note that b2,3 = 0 in accordance with Table 1.

(17) for i = 1, p = 2 is given as,

dT · u1,2 + b1,2 = dT · (−v1 + v2) + a1,222 (25)

a1,2 and b1,2 are selected appropriately by the optimization
program in order to satisfy the equality.

5. SIMULATIONS

In this paper, ”Gurobi” [14] which is an efficient mixed inte-
ger linear programming solver is used by employing branch
and cut strategy. The evaluation of the proposed method
is done for a uniform linear array (ULA) with M antennas
where L elements are chosen at each case. For simplicity,
Pan = 1W is selected.

In the first experiment, M = 8 and L = 4 antennas are
selected as in LTE standard [18]. Line of sight condition is
assumed and there are N = 4 users at azimuth angles 50◦,
90◦, 120◦ and 150◦ respectively. The power proportions for
each user are selected as γ1 = 1, γ2 = 4, γ3 = 1, and γ4 = 2
respectively. n = 5 bits are used for the discrete phase-only
beamformer. Fig. 1 shows the beampatterns for the proposed
discrete phase-only beamformer (DPOB) and the fixed ULA
with 4 elements. Both of the DPOB’s in Fig. 1 are optimum
[12] but DPOB with antenna selection chooses the best 4-
element subarray out of M = 8. The transmit power for each
user is significantly improved as seen Fig. 1 for the antenna
selection case.

In the second experiment, the azimuth angles for N = 4
users are selected randomly at each trial. In this case, L = 4
but M is changed as 8, 12 and 16 respectively. Brute force
result is shown only for M = 8 due to computational com-
plexity. As it is seen from the Fig. 2, proposed method and
brute force are exactly the same since the method is optimum.
It is also seen that L = 4 out of M = 16 antenna case gives

the best result for t = min{ |w
Hhk|

2

γk
} ≤ L2

γmax
= 16

4 = 4 and
it is almost equal to the upper bound tmax = 4.

In the third experiment, Rayleigh channel model is as-
sumed and the channels are selected randomly at each trial.
Results of both DPOB with fixed array ( M = L = 4 ) and
antenna selection ( M = 8, L = 4 ) are shown for different

Table 2. Computational time of DPOB and brute force search
L = 4 M = 8 M = 12 M = 16
DPOB 7.96 s 12.18 s 46.91 s

BRUTE FORCE 88 s 430 s 1250 s

number of bit values, n = 3, 4, 5. Fig. 3 shows the minimum
SNR for 100 different channel realizations. Minimum SNR
obtained with antenna selection is higher than that of fixed
array even with small number of bits.

Table 2 shows the computational complexity of the brute
force and the proposed method where the average of 10 trials
are reported. As it is seen from this table, the proposed op-
timum method has significantly lower complexity thanks to
the efficiency of the mixed integer linear programming with
branch and cut technique [14].
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Fig. 1. Beampatterns of DPOB with antenna selection and
fixed array (The dotted lines show the azimuth angles of the
users).
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DPOB with antenna selection M=12, L=4     
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DPOB with fixed array M=L=4
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Fig. 2. Minimum SNR for 100 channel realizations for DPOB
with antenna selection for different number of antennas and
fixed array in line of sight condition with ULA.
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Fig. 3. Minimum SNR for 100 realizations of Rayleigh fading
channels for DPOB with antenna selection and fixed array for
different number of bits.

6. CONCLUSION
Single group multicast transmit beamformer design with an-
tenna subarray selection problem is considered. A method for
optimum discrete phase-only beamformer with antenna selec-
tion is presented. It is shown that the proposed method per-
forms significantly better compared to optimum fixed array.
Computational complexity is much better than the exhaustive
search thanks to the efficiency of the selected algorithm for
optimization.
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