
HUMAN ACTION RECOGNITION IN 3D MOTION SEQUENCES

Konstantinos Kelgeorgiadis, Nikos Nikolaidis

Artificial Intelligence and Information Analysis Laboratory
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

ABSTRACT
In this paper we propose a method for learning and recognizing
human actions on dynamic binary volumetric (voxel-based) or 3D
mesh movement data. The orientation of the human body in each 3D
posture is estimated by detecting its feet and this information is used
to orient all postures in a consistent manner. K-means is applied on
the 3D postures space of the training data to discover characteristic
movement patterns namely 3D dynemes. Subsequently, fuzzy vector
quantization (FVQ) is utilized to represent each 3D posture in the 3D
dynemes space and then information from all time instances is com-
bined to represent the entire action sequence. Linear discriminant
analysis (LDA) is then applied. The actual classification step utilizes
support vector machines (SVM). Results on a 3D action database
verified that the method can achieve good performance.

Index Terms— human activity recognition, 3D data

1. INTRODUCTION

Human activity recognition is a research area that has attracted the
attention of numerous researchers during the last fifteen years [1].
Activity recognition is usually applied on video data and is a chal-
lenging task. Its applications include automatic annotation and se-
mantic description of video data for indexing, organization and other
purposes, human-computer interaction, detection of dangerous situ-
ations in surveillance setups, etc. Activity recognition on 3D human
movement data i.e., dynamic volumetric (voxel-based) or 3D mesh
data has been rarely studied [2], [3], [4], [5], [6] although, it can
have important applications similar to those of video-based activity
recognition, such as semantic annotation of animation sequences for
summarization, indexing and browsing or human-machine interac-
tion in setups where acquisition of such data is feasible. In addition,
since video feeds from multi-view camera setups are frequently used
to generate 3D movement data, such methods can be used to achieve
activity recognition on multi-camera environments. Motion capture
data is the only type of 3D data that attracted a significant amount of
activity recognition research [7], [8], [9], [10]. Activity recognition
can be formulated as a problem of classification of time varying data,
usually involving the matching of a movement data sequence (video
/ 3D) with a set of already labelled reference sequences. Thus, action
recognition involves in many cases two distinct phases: the training
phase and the actual recognition (recall) phase.

This paper presents a method that operates on dynamic binary
volumetric (voxel-based) or 3D mesh movement data. An important
advantage of the method is that it does not require temporal segmen-
tation of the sequences into atomic actions, e.g. steps. In addition,
the utilized action representation makes the method fairly insensitive
to speed changes or changes in the action start and end point.

2. METHOD DESCRIPTION

The method assumes that each single-person action, belonging to
one of R distinct action classes, is represented as a sequence of bi-
nary volumes (binary 3D voxel arrays) or 3D postures. In case 3D
body posture data are provided as 3D meshes, a voxelization proce-
dure can be applied in order to transform them to volumetric repre-
sentation. Since the proposed method is not invariant with respect
to body orientation, its orientation within each volume should be de-
rived. A method based on the orientation of the feet is used for this
purpose.

2.1. Estimating body orientation

The human feet can provide body orientation information since each
foot has a primary axis (major elongation) and the bisector of the
angle formed by the primary axes of the two feet, can usually be
used to define the human body forward direction i.e., its orientation
is very close to the orientation of the vector that is perpendicular to
the human chest.

Thus, we can assume that, by localizing each foot in the binary
volume of the body and deriving its primary axis we can approximate
the body orientation, namely its forward direction. However, in order
to do so we have to derive not only the primary axis of each foot but
also its forward direction, i.e. we have to come up with a vector. The
sum of these vectors can then provide the body forward direction.
An algorithm for deriving these vectors is presented below.

Initialization: Let N to be the maximum expected volume
(in voxels) of a foot up to the height of the ankle and d be a small
portion of this volume e.g., d = N/4.

Step 1, feet localization: Crop and keep the lower part of
the volume (Fig. 2-(2)), i.e., the part that corresponds to z < K,
z being the vertical direction (height). Begin to scan the cropped
volume in a bottom to top fashion and, when a foreground (body)
voxel is found, apply a bottom-to-top floodfill algorithm, collecting
the filled voxels into a new list, Li, and removing them from the
volume. By doing so we obtain D lists of voxels that correspond to
D disjoint objects in the cropped volume. The type of the floodfill
ensures that the collected voxels are sufficiently sorted according to
their height without the need to apply a sorting algorithm. Discard
the lists of voxels (objects) that contain less that VT voxels, where
VT is a threshold used to separate body parts from noise. D′ ob-
jects are retained after this step. From each remaining list of voxels,
Li, i = 1, . . . , D′, select the first N voxels (green area B in Fig. 1)
and apply PCA to them in order to find the primary axis, V̄1 (Fig.1)
and the variance along the primary and secondary axis, σ2

(N,pr) and
σ2
(N,sec). If σ2

(N,pr)/σ
2
(N,sec) < σ2

v = 1.5 we discard this object as
being not oblong enough and thus not corresponding to a foot. Since



Fig. 1. Foot direction estimation procedure.

we expect to find two feet, if more than two objects are present after
the above rejection procedures we keep only two of them (Fig. 2-(4))
by discarding the ones that reside at higher heights.

Step 2, estimation of feet direction: For each of the two
remaining lists of voxels, Li, i = 1, 2, select the first N + d voxels
(green and gray area A+B in Fig. 1) and, again, apply PCA to them
in order to find the new primary axis, V̄2. Check the value of the
inner product V̄1 · V̄2. If V̄1 · V̄2 < 0, i.e., if the vectors are forming
an obtuse angle, set V̄2 = −V̄2 to make the two vectors point towards
the same direction. Assuming that the vectors V̄1 = (v1x, v1y, v1z)
and V̄2 = (v2x, v2y, v2z) are normalized, if u1z < u2z , then V̄Fi =
−V̄1, else V̄Fi = V̄1 where V̄Fi is the vector representing the foot
forward direction. This is because, if voxels in area A, when added
to voxels in area B, cause the primary vector to rotate downwards,
the new voxels are placed in a location oposite the direction of the
primary vector (see Fig.1). Conversely, if the additional voxels cause
the primary vector to rotate upwards, the new voxels are placed in a
location towards the direction the primary vector points to.

Step 3, estimation of the body orientation: Set V̄final =
V̄F1 + V̄F2. The orientation of the subject can be estimated by pro-
jecting the vector V̄final on the plane z = 0.

This algorithm has been found to provide orientation estimates
that are accurate enough for our purpose when 3D data of moder-
ate/good quality are provided. When applied on the 3D postures
sequence of an action, it provides a sequence of angles that indicate
the direction of the human body at each time instance. Using this
sequence, the body can be rotated in each instance around the z-axis
so that it has a consistent orientation (e.g., heading towards 00) in all
postures and all action sequences. In action sequences where body
orientation does not change significantly from one time instance to
the next, one can obtain the average orientation over time and orient
all postures towards this direction.

The proposed body orientation estimation method can fail un-
der certain circumstances. Indeed, subjects having their legs tight
together can cause the algorithm to fail in step 1. Moreover, when
the method is applied on subjects wearing loose clothes such as wide
trousers it generates wrong orientation estimates. This problem oc-
curred on one of the subjects in our dataset (see Section 3). Ob-
viously, the precision of the orientation estimation depends on the
resolution of the binary pose volume. Volumes with poor resolution
provide poor orientation estimates.

2.2. Normalizing and centering the volumes

After consistently orienting the human body within each volume,
normalization and centering take place. All the resulting volumes
in each action are processed so that the centroid of the subject is
always on the center of the volume. After centering all volumes
with respect to their centroid, we normalize them by uniformly sub-
sampling the initial volume so that, while centered, the subject occu-

Fig. 2. The voxel data on different stages of the orientation estima-
tion algorithm.

pies the maximum space possible in a volume of specific dimensions
(e.g., 64×64×64 voxels) without any part of it being clipped. Some
normalized 3D postures are presented in Fig.3.

Fig. 3. Sample body centroid-centered and normalized 3D postures
(64× 64× 64 voxels).

2.3. Dyneme extraction

Similar to the method in [11], the proposed method is based on clus-
tering the 3D postures in the training set in order to come up with
characteristic patterns, called dynemes, or, in our case, 3D dynemes.
Indeed, in order to identify characteristic posture groups from the
training set and extract cluster prototypes, K-Means was applied on
all 3D postures of all actions in the training set. Other clustering al-



gorithms, like Fuzzy C-Means (FCM), can be used for this step but
K-Means provided the best results. Each 3D volume (3D posture) is
transcribed into a vector called posture vector, xi and the K-Means
algorithm is applied on these vectors. The number of K-Means clus-
ters that need to be used for the method to work efficiently depends
on the number of actions R that are to be recognized, the different
ways an action can be performed by different people, the different
body types, etc and it is usually selected empirically. At the end of
the clustering procedure the space of all 3D postures in the training
set is partitioned into a number of clusters, each containing similar
postures. Let vc, c = 1, . . . , C be the extracted centers of the clus-
tering algorithm. Each such center corresponds to the average of all
postures in the cluster, and represents one dyneme. Some sample
dynemes are presented in Fig.4. It should be noted that since each
dyneme is the result of averaging, it no longer represents a binary
volume.

Fig. 4. Sample dynemes extracted by K-Means. The blue areas are
the ones with low intensity and the red areas are the ones with high
intensity.

2.4. Mapping postures and actions to the dyneme space

Using the centers (dynemes) acquired from the clustering algorithm
of the previous step, we now map all the vectorized postures (posture
vectors), xi, in the training set into the new space spanned by the
dynemes, namely the dyneme space. To do so we create for each xi

a ”membership” vector as follows:

ui = [u1,i, . . . , uC,i]
T (1)

uc,i = (‖xi − vc‖2)2/(1−m)

m being the fuzzification parameter (m > 1). Subsequently, we
normalize this vector to obtain the final representation of the posture
in the dyneme space:

φi =
ui

‖ui‖1
(2)

Next, we calculate representations for each action in the dyneme
space by simply averaging the normalized membership vectors of all
postures of this action:

s =
1

L

L∑
i=1

φi (3)

It is obvious that such an action representation retains essentially no
information regarding the temporal succession of the various pos-
tures within the action, its length, speed and start/end points, making
it advantageous for recognition purposes, despite its apparent sim-
plicity.

2.5. LDA projection

In order to reduce the dimensionality of the action representations
generated in the previous step and, at the same time, keep them as
discriminant as possible, we utilize Linear Discriminant Analysis
(LDA). LDA aims at calculating a linear projection matrix ΨT

opt ∈
<C×R−1 (R being the number of actions we wish to recognize) so
that:

Ψopt = argmax
Ψ

(JLDA (Ψ)) (4)

JLDA (Ψ) =
∣∣∣ΨTSbΨ

∣∣∣ / ∣∣∣ΨTSwΨ
∣∣∣ (5)

with Sb, Sw ∈ <C×C being the between and the within class scatter
matrices, respectively.

After calculating the projection matrix we project action repre-
sentations s (Eq. 3) thus reducing their dimension to R − 1. Thus,
the final representation of an action will be:

yn = ΨT
optsn (6)

2.6. Classification

In order to classify a 3D posture (volume) sequence depicting an un-
known action to one of the actions the algorithm has been trained
to recognize, we first consistently orient the 3D postures of the se-
quence and then normalize, center and sub-sample them to produce
volumes of the same dimension to the ones used for the training.
Subsequently, we use the centers (dynemes) of the K-Means algo-
rithm that were extracted from the training data in order to map each
posture in the test sequence into the dyneme space using Eq. (1),(2).
Then, we calculate the representation of the entire sequence in the
dyneme space using Eq. (3), project the representation using Eq.
(6) and the projection matrix Ψopt evaluated from the training data
and, finally, proceed into the classification using the resulting vector,
τ on an SVM classifier. The projected representations of the action
sequences that belong to the training set obtained by Eq. (6) were
used to train a classifier.

3. EXPERIMENTAL RESULTS

The proposed method has been tested on the i3DPost multi-view
and 3D human action/interaction database [12]. This database has
been created by using a convergent setup of eight synchronized
and calibrated cameras in order to produce high definition multi-
view videos. In each multi-view video, one of the eight persons
in the database is performing one of the seven actions defined in



the database namely ”walk” (wk), ”run” (rn), ”jump forward” (jf),
”jump in place” (jp), ”bend” (bd), ”one hand wave” (wv) and ”sit”
(st), which is actually a combined action consisting of ”sit down”
and ”stand up”. The subjects have different body sizes, clothing
and are of different sex and nationalities. The multi-view videos
have been used to construct a 3D mesh at each frame, describing the
respective 3D human body surface (see [12] for more details).

The volumes on which the proposed technique was applied were
obtained by converting the mesh data of the database into binary vol-
umes (see [13]) of dimensions 256× 256× 256 voxels. Initially, all
action sequences in the database were oriented properly using the
orientation estimation technique presented in Section 2.1. Since, in
all sequences of the database, the person doesn’t change his/her di-
rection of motion within each action, it was decided to consistently
orient the bodies by applying a single rotation to all postures in each
sequence. The angle of this rotation was the mean of all body orien-
tation angles in the sequence. Next, the postures were centered with
respect to their centroid and normalized to fit into a 64 × 64 × 64
volume, as described in the previous Section. Since the dataset was
relatively small, a Leave One Out Cross Validation (LOOCV) pro-
cedure was deployed to infer the correct recognition rate of the pro-
posed method. The summary of this LOOCV procedure is given in
Fig.5.

• Set NS to be the number of subjects in the database. Set NA to be the
number of actions in the database.

• Select a value for C (the number of centers used in K-Means).

• For s = 1 to NS , For a = 1 to NA,

– Select the sequence of subject s performing action a to be the test
set and all remaining sequences to be the training set.

TRAINING

– Compute the dyneme vectors, vc, c = 1, . . . , C, from the train-
ing set using K-Means.

– Compute the movement representation in the dyneme space for
each sequence in the training set – Eq. (1)(2)(3).

– Calculate the LDA matrix, MLDA, and apply LDA projection –
Eq. (6).

TESTING

– Map each posture vector in the test sequence into the dyneme
space using vc, c = 1, . . . , C (the dyneme vectors obtained from
the training phase) and compute its movement representation –
Eq. (1)(2)(3).

– Apply LDA projection using MLDA obtained from the training
phase – Eq. (6).

– Classify the action using an SVM trained on the projected repre-
sentations of the actions of the training data (yn).

• End For (a), End For (s)

Fig. 5. The LOOCV procedure.

After a number of trials the best configuration for the SVM was
proven to be a linear kernel with CSV M = 105. The number of
centers of the K-Means algorithm (dynemes) that produced the best
results was determined to be C = 23. The fuzzification parameter
was selected to be m = 1.33. The overall correct classification rate
was equal to 80.3%. The classification results in the form of the
confusion matrix are given in Table 1. It should be noted however
that some classification errors were due to the fact that one subject

was wearing loose trousers that led to errors in the body orientation
procedure (the orientations of the other subjects were correctly esti-
mated).

Table 1. Confusion matrix (80.3% correct classification rate).
Recognised Action

R
ea

lA
ct

io
n wk rn jf bd wv jp st

wk 6 1 1 0 0 0 0
rn 0 8 0 0 0 0 0
jf 0 0 8 0 0 0 0
bd 0 0 2 6 0 0 0
wv 0 0 1 0 3 4 0
jp 0 0 2 0 0 6 0
st 0 0 0 0 0 0 8

4. CONCLUSIONS

In this paper a method for learning and recognizing human actions
on dynamic binary volumetric (voxel-based) or 3D mesh movement
data has been presented. The method was shown to achieve good
recognition performance, without requiring temporal segmentation
of the sequences into atomic actions, e.g. steps, or alignment of
the start and end points to specific key body postures. Future plans
include testing the method in larger datasets.
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