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ABSTRACT
For the random {0,±1} ternary matrix, it is interesting

to determine the number of nonzero elements required for
good compressed sensing performance. By seeking the best
RIP, this paper proposes a semi-deterministic ternary matrix,
which is of deterministic nonzero positions but random signs.
In practice, it presents better performance than common
random ternary matrices and Gaussian random matrices.

Index Terms— random matrix, ternary matrix, com-
pressed sensing, RIP, deterministic, semi-deterministic

I. INTRODUCTION

Compressed sensing is an emerging technique that aims
to acquire and recover sparse signals through an under-
determined sensing matrix [1]. Its performance is largely
determined by the nature of the nonadaptive sensing matrix
[2]. It is known that the random matrix with elements i.i.d
drawn from some known symmetric distributions, e.g. from
Gaussian distribution or Bernoulli distribution [1] [3], can
provide good sensing performance. In practice, the sparse
random ternary matrix with nonzero elements being ±1
equiprobably is more attractive due to its low complexity
but competitive performance [4]. For this kind of matrix,
the optimal number of nonzero elements that provides the
best sensing performance is still unknown, although some
deterministic ternary matrices have been developed with
algebraic codes [5] [6]. In this paper, we aim to address
this problem.

Inspired by the most recent study on the optimal sparsity
of the zero-one binary sensing matrix [7], this paper proposes
a suitable distribution for the nonzero elements of ternary
matrix by seeking the best restricted isometry property (RIP).
As will be shown latter, the proposed matrix enjoys two
obvious advantages: 1) in structure, it can be viewed as
’semi-deterministic’, since it holds random signs but fixed
nonzero positions; 2) in performance, it outperforms other
popular random matrices.

This paper is organized as follows. In the next section,
the RIP is first introduced, and then the proposed ternary
matrix is derived by searching the best RIP. In section
III, the proposed matrix is compared with other popular
random matrices by extensive simulations. Finally, the paper
is concluded in section IV.

II. MAIN RESULTS
II-A. Fundamentals of RIP

RIP is a predominant tool for evaluating the performance
of sensing matrix especially in the presence of interference.
Conceptually, it is concerned with a pair of parameters
(k, δk), where k denotes the number of nonzero elements
in the sparse signal, and δk is a positive constant called
restricted isometry constant (RIC). Let x ∈ R

N be a k-
sparse signal and A ∈ R

M×N be a sensing matrix, M < N .
The RIP states that x can be perfectly recovered from Ax
by solving a �1-regularized minimization problem, if the RIC
is less than some given threshold [8] [9] [10]. The RIC is
defined as the minimal positive constant δk such that the
following inequality

(1− δk)||xT ||2 ≤ ||ATxT ||2 ≤ (1 + δk)||xT ||2 (1)

holds for arbitrary submatrix AT and arbitrary corresponding
vectors xT ∈ R

|T |, where T indicates all possible column
index subsets of A with cardinality |T | = k. The exact
solution to δk is NP-hard [11]. In practice, it is generally
approximated by exploring the extreme eigenvalues of Gram
matrix A′

TAT [12], where A′
T denotes the transpose of AT .

Note that the value δk tends to increase with increasing k.
To recover a signal with large k, it is necessary to construct
the sensing matrix with small δk. So in the following part
we attempt to seek a ternary matrix with as small RIC as
possible.

II-B. RIP of ternary matrix
For the convenience of analysis, the ternary matrix is

denoted by A(d, s), whose two parameters are defined as
below:

• the parameter d denotes the number of nonzero el-
ements per column; the nonzero position is selected
uniformly at random;

• the parameter s is the maximum number of overlap-
ping nonzero positions between arbitrary two distinct
columns; then the correlation values between distinct
columns should vary in the integer interval [−s, s].

With the definition above, the RIP of ternary matrix is
derived in Theorem 1.

Theorem 1. For a ternary matrix A(d, s), the RIC can be
approximately derived as



δk ≈ (k − 1)s/d (2)

Proof: We customarily denote by λ1(X) ≥ . . . ≥
λk(X) the eigenvalues of matrix X . Two extreme eigen-
values are derived as follows.

1) Let B = A′
TAT − (d + s) × I , then Bii = −s and

Bij,i�=j ∈ [−s, s]. Recall that AT is the submatrix of A
with columns indexed by T ⊂ {1, 2, 3..., n}, |T | = k.
Let the normalized x = (x1, . . . , xk)

′ be the eigen-
vector corresponding to λk(B). Then the minimal
eigenvalue can be formulated as

λk(B) = x′Bx = 1′[B ◦ (xx′)]1

where ◦ denotes the Hadamard product and 1 =
(1, . . . , 1)′ ∈ R

k×1. Since B is symmetric, by
simultaneous permutations of the rows and columns
of B, we can suppose xi ≥ 0 for i = 1, . . . , n and
xi < 0 for i = n + 1, . . . , k, and then xx′ is divided
into four parts:

xx′ =
[

Xn×n Xn×(k−n)

X(k−n)×n X(k−n)×(k−n)

]

where the entries in Xn×n and X(k−n)×(k−n) are non-
negative, while the entries in Xn×(k−n) and X(k−n)×n

are nonpositive. Further, define a novel matrix B̃ of
same size with B

B̃ =

[ −s× 1n×n s× 1n×(k−n)

s× 1(k−n)×n −s× 1(k−n)×(k−n)

]

where 1a×b is an a × b matrix with all entries equal
to 1. It is easy to deduce that

λk(B̃) = min{y′B̃y : ‖y‖ = 1} ≤ x′B̃x ≤ x′Bx

= λk(B).

Since the rank of B̃ is at most 2, it has at most two
nonzero eigenvalues. Considering the trace and the
Frobenius norm, we have

λk(B̃) = −ks, 0 ≤ n ≤ k.

Then with λk(B) ≥ λk(B̃), we have the minimum
eigenvalue

λk(A
′
TAT ) = λk(B) + (d+ s) ≥ d− (k − 1)s

2) Let C = A′
TAT − (d − s) × I , then Cii = s and

Cij,i�=j ∈ [−s, s] .
Let normalized x = (x1, . . . , xk)

′ be the eigenvector
corresponding to λ1(C). By simultaneous permuta-
tions of C and x, we can suppose xi ≥ 0 for
i = 1, . . . , n and xi < 0 for i = n + 1, . . . , k, and
the maximal eigenvalue is formulated as

λ1(C) = x′Cx = 1′[C ◦ (xx′)]1.

Further define

C̃ =

[
s× 1n×n −s× 1n×(k−n)

−s× 1(k−n)×n s× 1(k−n)×(k−n)

]
,

then

λ1(C̃) = max{y′C̃y : ‖y‖ = 1} ≥ x′C̃x ≥ x′Cx

= λ1(C).

Since the rank of C̃ is at most 2, it has at most two
nonzero eigenvalues. Considering the trace and the
Frobenius norm, we have

λ1(C̃) = ks.

Then λ1(C) ≤ λ1(C̃) ≤ ks. Finally, we obtain

λ1(A
′
TAT ) = λ1(C) + (d− s) ≤ d+ (k − 1)s

To sum up, we have the RIC:

δk =
λ1(A

′
TAT )− λk(A

′
TAT )

λ1(A′
TAT ) + λk(A′

TAT )
≈ (k − 1)s/d

II-C. Semi-deterministic ternary matrix
From Theorem 1, it can be observed that the RIC will

decrease as s decreases or d increases. To reduce the value
of RIC as much as possible, it is natural to minimize s, i.e.
let s = 1, while maximizing d [7]. In practice, the desired
matrix can be constructed with progressive edge-growth
(PEG) algorithm [7] [13]. This allows us to define a semi-
deterministic ternary (SDT) matrix, which is constructed in
two steps:

1) the nonzero position is determined by PEG algorithm
based on the principle of maximizing d while setting
s = 1;

2) the nonzero position is randomly signed at each com-
pressed sensing process.

Obviously, the proposed SDT matrix should have better
RIP than other random ternary matrices with no specific
constraint on both s and d. The following simulation also
verifies this conjecture.

III. SIMULATION
The proposed SDT matrix is compared with other two

typical random matrices: random ternary matrices and Gaus-
sian random matrices. Recall that the recovery performance
is sensitive to the distribution and sign of sparse signal [14]
[15] [16]. So the signed and unsigned (absolute value) sparse
signals are both tested, which have nonzero entries drawn
from three typical distributions:

• Bernoulli distribution {±1};
• uniform distribution U(−1, 1);
• standard normal distribution N(0, 1).
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Fig. 1. The BP recovery rates (the vertical axis) over sparse signals of varying sparsity k ∈ [50, 80]. Each column corresponds
to one class of sparse signals: {±1} in (a), U(−1, 1) in (b) and N(0, 1) in (c). The sparse signals are unsigned in the upper
row, and signed in the lower.

To obtain convincing results, we exploit three popular recov-
ery algorithms: BP [17] [18], SP [19] and OMP [20]. The
matrix is constructed with size (200, 400). Here the SDT
matrix with d=7 is derived with PEG algorithm. The column
degree of random ternary matrix is empirically set to 8 for
achieving its best performance. The recovery performance
is measured with the correct recovery rates over the sparse
signals of varying sparsity k ∈ [50, 80]. Each simulation
point is derived after 10000 simulation runs.

The correct recovery rates of three recovery algorithms
are shown in Figures 1-3, respectively. It is clear that for
all kinds of sparse signals, the proposed SDT matrix always
performs better than the random ternary matrix and Gaussian
matrix, while the latter two matrices show comparable
performance. It confirms the RIP advantage of the proposed
SDT matrix.

IV. CONCLUSION

This paper has proposed a kind of random ternary matrix
with good RIP. The proposed matrix can be viewed as
semi-deterministic due to its deterministic nonzero positions.
In practice, as demonstrated by experiments, the proposed
matrix presents better performance than other two popular
random matrices: random ternary matrices and Gaussian
random matrices. Intuitively, it probably performs better than
all other possible random or deterministic ternary matrices.
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Fig. 2. The SP recovery rates (the vertical axis) over sparse signals of varying sparsity k ∈ [50, 80]. Each column corresponds
to one class of sparse signals: {±1} in (a), U(−1, 1) in (b) and N(0, 1) in (c). The sparse signals are unsigned in the upper
row, and signed in the lower.
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Fig. 3. The OMP recovery rates (the vertical axis) over sparse signals of varying sparsity k ∈ [50, 80]. Each column
corresponds to one class of sparse signals: {±1} in (a), U(−1, 1) in (b) and N(0, 1) in (c). The sparse signals are unsigned
in the upper row, and signed in the lower.
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