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ABSTRACT
In this paper, we propose oversampling of graph signals by
using oversampled graph Laplacian matrix. The conventional
critically sampled graph filter banks have to decompose an
original graph into bipartite subgraphs, and the transform has
to be performed on each subgraph due to the spectral fold-
ing phenomenon caused by downsampling of graph signals.
Therefore, they cannot always utilize all edges of the original
graph for the one-stage transformation. Our proposed method
is based on oversampling of the underlying graph itself, and
it can append nodes and edges to the graph somewhat arbi-
trarily. We use this approach to make one oversampled bipar-
tite graph that includes all edges of the original non-bipartite
graph. We apply the oversampled graph with the critically
sampled filter bank for decomposing graph signals, and show
the performance of graph signal denoising.

Index Terms— Graph signal processing, graph oversam-
pling, multiresolution, spectral graph theory, graph wavelets

1. INTRODUCTION

Graphs are data structures that can represent complex rela-
tionships among data and can be used in many fields of en-
gineering and science. A graph consists of nodes and edges,
and each edge is usually assigned a weight determined by the
similarity and connectivity of the nodes. A recent develop-
ment is graph signal processing, in which a sample is placed
on each node of a graph and the processing takes into account
the structure of the samples [1–9]. Whereas signals of regular
signal processing have very simple structures, those of graph
signal processing are allowed to have complex irregular struc-
tures.

Multiresolution analysis is efficient for analyzing, pro-
cessing or compressing signals [10]. Wavelet transforms for
graph signals can be used to make multiresolution analysis
[2–4]. An important topic in graph signal processing is down-
sampling and upsampling. Similar to the aliasing of regu-
lar signal processing, the spectral folding phenomenon is oc-
curred by downsampling in graph signal processing. In order
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to deal with this challenge, studies on critically sampled fil-
ter banks have focused on bipartite graphs and determined the
perfect reconstruction conditions [2, 3].

The graph-based transforms with the downsampling and
upsampling operations, such as the critically sampled graph
filter banks and the oversampled ones [11, 12], can only be
applicable to bipartite graphs. For arbitrary non-bipartite
graphs, we have to decompose an original graph into an
edge-disjoint collection of bipartite subgraphs whose union
is the original graph, and the transform is performed on each
of these subgraphs. Since a subgraph has only a part of edges
of the original graph, many edges are usually not utilized in
one-stage transform.

In this paper, we propose graph oversampling, that yields
oversampled graph Laplacian matrices. Furthermore, graph
signals are oversampled taking into account the graph struc-
tures. The graph oversampling enables us to make one bipar-
tite graph that includes all edges of the original graph, which
is completely different from the graph used in the conven-
tional critically sampled filter banks. The redundant multires-
olution transform can be implemented by applying the crit-
ically sampled graph filter banks on the oversampled graph.
We conduct graph signal denoising and demonstrate the ef-
fectiveness of the oversampled graph.

The rest of this paper is organized as follows. In Section 2,
we describe notations used in this paper and the two-channel
critically sampled wavelet filter bank on graphs [2,3]. Section
3 introduces methods of oversampling graph Laplacian matri-
ces and input signals and shows the way of making one over-
sampled bipartite graph from a three-colorable graph. Section
4 describes signal spread and denoising experiments. Section
5 concludes the paper.

2. PRELIMINARIES

2.1. Graph Signals

A graph is represented as G = {V, E}, where V and E de-
note sets of nodes and edges, respectively. The graph sig-
nal is defined as f ∈ RN . We will only consider a finite
undirected graph with no loops or multiple edges. The num-
ber of nodes is N = |V|, unless otherwise specified. The



Fig. 1. Critically sampled two-channel graph filter bank.

(m,n)-th element of the adjacency matrix A is the weight
of the edge between m and n if m and n are connected,
and 0 otherwise. The degree matrix D is a diagonal matrix
and its m-th diagonal element is dmm =

∑
n amn. The

unnormalized graph Laplacian matrix (GLM) is defined as
L := D − A and the symmetric normalized GLM is L :=
D−1/2LD−1/2. The symmetric normalized GLM has the
property that its eigenvalues are within the interval [0, 2], and
we will use L in this paper. The eigenvalues of L are λi and
ordered as: 0 = λ0 < λ1 ≤ λ2 . . . ≤ λN−1 ≤ 2 without
loss of generality. The eigenvector uλi

corresponds to λi and
satisfies Luλi

= λiuλi
. The entire spectrum of G is defined

by σ(G) := {λ0, . . . , λN−1}. The projection matrix for the
eigenspace Vλi is

Pλi =
∑
λ=λi

uλu
T
λ , (1)

where uTλ is the transpose of uλ. Let h(λi) be the spectral
kernel of filter H. The spectral domain filter can be written as

H = h(L) =
∑

λi∈σ(G)

h(λi)Pλi
. (2)

The spectral domain filtering of graph signals can be simply
denoted as Hf .

2.2. Two-Channel Graph Wavelet Filter Banks

A bipartite graph whose nodes can be decomposed into two
disjoint sets L and H such that every edge connects a node
in L to one in H can be represented as G = {L,H, E}. The
downsampling function βH of a bipartite graph is defined as

βH(m) =

{
+1 if m ∈ H,
−1 if m ∈ L.

(3)

The diagonal downsampling matrix is JH = diag{βH(n)}
and satisfies J = JH = −JL. The downsampling-then-
upsampling operation can be defined as follows:

Ddu,L =
1

2
(IN + JL), Ddu,H =

1

2
(IN + JH). (4)

where IN is an N ×N identity matrix.
J and Pλi

are related as follows [3] (spectral folding phe-
nomenon):

JPλi = P2−λiJ. (5)

The critically sampled filter banks decomposeN input signals
into |L| lowpass coefficients and |H| highpass coefficients,
where |L| + |H| = N , as illustrated in Fig. 1. The overall
transfer function of graph-QMF [3] and graphBior [2] can be
written as

T =
1

2
G0(I− J)H0 +

1

2
G1(I+ J)H1

=
1

2
(G0H0 +G1H1) +

1

2
(G1JH1 −G0JH0).

(6)

The spectral folding term G1JH1 − G0JH0, arising from
downsampling and upsampling, must be zero. In addition,
T = IN should be satisfied for perfect reconstruction. Hence,
the perfect reconstruction condition can be expressed as

g0(λ)h0(λ) + g1(λ)h1(λ) = 2,

−g0(λ)h0(2− λ) + g1(λ)h1(2− λ) = 0.
(7)

The orthogonal transform, graph-QMF, has the orthogonality
condition h20(λ) + h20(2 − λ) = c2. Therefore, the filters are
chosen in a way that satisfies h1(λ) = h0(2 − λ), h0(λ) =
g0(λ) and h1(λ) = g1(λ). Unfortunately, filters that satisfy
these conditions are not compact support. That is, if graph-
QMF were forced to be compact support, it would suffer from
a loss of orthogonality and a reconstruction error. On the other
hand, graphBior relaxes the orthogonal condition of graph-
QMF and has a perfect reconstruction condition and compact
support because it uses a design method similar to Cohen-
Daubechies-Feauveau’s construction for regular signals [13].

The critically sampled filter bank is designed for bipar-
tite graphs. For any arbitrary graph, the original graph should
be decomposed into an edge-disjoint collection ofK bipartite
subgraphs [3,14] and the transform is performed on each sub-
graph. Each subgraph has the same node set as the original
graph and their union is the original graph. This decomposi-
tion leads to a multi-dimensional graph wavelet filter bank.

3. GRAPH OVERSAMPLING

In this section, we propose the way to make oversampled
GLMs and oversampled graph signals, and show the exam-
ple of the oversampled graph.

3.1. Oversampled Graph Laplacian Matrix

Fig. 2 shows an example of the transform using graph over-
sampling. By appending the nodes and the edges, the original
graph G = {L,H, E} is expanded to the oversampled graph
G̃ = {L̃, H̃, Ẽ} that L̃ and H̃ includes L and H , respectively.
The downsampling matrices JL̃ and JH̃ of the oversampled
graph are defined by L̃ and H̃ . The oversampled signal f̃ is
written as

f̃ =

[
f
f ′

]
, (8)
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Fig. 2. Graph oversampling followed by the critically sampled graph filter bank.
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Fig. 3. Bipartite oversampled graph construction for a three
colorable graph. (a) Three-colorable graph whose node sets
are F1, F2 and F3. (b) Bipartite subgraph G1. (c) Bipartite
subgraphG2. (d) Oversampled bipartite graph. The gray lines
are edges contained in G1 and the black lines are additional
edges. (e) The sets L̃ and H̃ of the oversampled bipartite
graph.

where f ′ is the signal for additional nodes and its length is
N1 − N0. The spectral domain filtering is performed based
on the oversampled GLM.

Let A0 be an adjacency matrix of the original bipartite
graph whose size is N0 × N0. The normalized oversampled
GLM L̃ is N1 ×N1 (N1 > N0), and N1 −N0 is the number
of the additional nodes. It is represented as

L̃ = D̃−1/2L̃D̃−1/2 (9)

where

L̃ = D̃− Ã (10)

Ã =

[
A0 A01

AT
01 0N1−N0

]
, (11)

in which Ã is the oversampled adjacency matrix whose size
is N1 ×N1 and D̃ is a degree matrix that normalizes the new
GLM. Additionally, A01 contains information on the connec-
tion between the original nodes and appended ones. Note
that nodes are appended so that L̃ is still a bipartite graph.
The filters in Fig. 2 can be represented as Hi = hi(L̃) and
Gi = gi(L̃) for i = 0, 1.

(a) (b) (c) (d)

Fig. 4. (a) Petersen graph. (b) Bipartite subgraph #1. (c)
Bipartite subgraph #2. (d) Proposed bipartite graph. The gray
lines are edges contained bipartite subgraph #1 and the black
lines are additional edges.

(a) (b)

(c) (d)

Fig. 5. Signal spread. (a) Input signal. (b) Lowpass filtered
signal using the (non-bipartite) original graph. (c) Lowpass
filtered signal using bipartite subgraph #1 (see Fig. 4(b)).
(d) Lowpass filtered signal using oversampled bipartite graph
(see Fig. 4(d)).

3.2. Graph Expansion Methods

As described in Section 3.1, the appended nodes of the over-
sampled GLM can be arbitrarily connected to the nodes, as
long as the oversampled graph is bipartite. We describe an
efficient way to construct such oversampled graphs. Since the
oversampled graph has to be a bipartite graph, we first de-
compose the original graph into bipartite subgraphs. On the
basis of one bipartite subgraph, we append nodes and edges
in another bipartite subgraph to it. In this way, we can make
one oversampled bipartite graph that has all edges of several
bipartite subgraphs. For instance, the way to convert a three-
colorable graph into one bipartite graph containing all edges
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Fig. 6. Denoising results. (a) Original signal. (b) Noisy signal (σ = 1/2). (c) Signal denoised by sym8 (1 level). (d) Signal
denoised by sym8 (5 levels). (e) Signal denoised by graphBior(6,6). (f) Signal denoised by the graph Laplacian pyramid. (g)
Signal denoised by the proposed method.

Table 1. Denoised Results: SNR (dB)
σ 1 1/2 1/4 1/8 1/16 1/32 redundancy

sym8 (1 level) 1.80 6.14 11.88 18.91 24.15 29.99 1.00
sym8 (5 levels) 3.08 5.61 11.07 18.27 24.14 30.09 1.00
graphBior [2] 2.81 8.38 14.49 20.65 25.52 31.42 1.00

graph Laplacian pyramid [15] 2.79 8.37 14.48 20.51 25.57 31.56 2.05
oversampled GLM + graphBior 3.50 9.13 15.13 21.64 26.85 32.73 2.05

noisy 0.15 5.81 12.06 18.41 23.94 30.07 –

of the original graph is described below.

The oversampled graph construction for a three-colorable
graph is illustrated in Fig. 3. We assign three colors to nodes
such that adjacent nodes have different colors and distinguish
these nodes as F1, F2, and F3, respectively. The original
graph can be decomposed into two bipartite subgraphs, G1

that contains edges linking F1 and F2 ∪ F3 and G2 that con-
tains edges between F2 and F3 (Figs. 3(b) and (c)). Hence,
the edges in G2 only have connections on one side of the sub-
sets (F2 and F3) of G1. By adding the nodes just above F2

and F3 and edges between F2 and F3 to G1, we can convert
the original graph into one bipartite graph that contains all
edges and nodes in the original graph (Fig. 3(d)). Finally, the
oversampled graph is decomposed by the critically sampled
graph filter bank into sets L̃ and H̃ , as shown in Fig. 3(e).

For example, the Petersen graph (Fig. 4(a)) is a well-
known three-colorable graph, and it can be decomposed into
two bipartite graphs (Figs. 4(b) and 4(c)). In order to make
the oversampled bipartite graph shown in Fig. 4(d), we place
blue nodes right above the red ones of the bipartite subgraph
#1 (Fig. 4(b)) and add edges by referring to the information
about the edges of the bipartite subgraph #2 (Fig. 4(c)). The

additional blue nodes have the same values as the correspond-
ing red nodes and are treated as f ′ in (8). Therefore, the over-
sampled graph can be regarded as the bipartite graph with all
edges of the original graph.

4. EXPERIMENTAL RESULTS

This section describes experiments that assess the perfor-
mances of the proposed method.

4.1. Signal Spread on Graphs

To demonstrate the advantage of the oversampled bipartite
graph, we compared the signal spreads of the critically sam-
pled graph and the oversampled one. The original graph in
this case is the Petersen graph (Fig. 4(a)) and it is decom-
posed into the two bipartite subgraphs shown in Figs. 4(b)
and 4(c). The input signal is shown in Fig. 5(a). The compar-
ison is performed between the original bipartite graph (Fig.
4(b)) and the proposed bipartite graph (Fig. 4(d)). The low-
pass filtered signals are shown in Figs. 5(b)–(d). As expected,
the spread of the signal after using the oversampled bipartite



graph is more similar to the original (non-bipartite) graph than
that of the critically sampled bipartite graph.

4.2. Graph Signal Denoising

Here, graph signals corrupted by additive white Gaussian
noise are denoised. We compared the proposed method with
the regular one-dimensional wavelet sym8 with one-level and
five-level decompositions, the critically sampled filter bank
(graphBior(6, 6)) [2], and the Laplacian pyramid for graph
signals [15]. Since sym8 treats the signal as a vector, it does
not take into account the structure of the signals. All of
graph-based methods perform one-level transforms and have
the same number of coefficients in the lowpass channel. The
lowest frequency subband was kept and the other high fre-
quency subbands were hard-thresholded with the threshold
T = 3σ, where σ is the standard deviation of the noise.

The original graph is the Minnesota Traffic Graph. It is
three-colorable, therefore it is a good example of the over-
sampled bipartite graph introduced in Section 3.2. We make
the oversampled graph and perform the critically sampled fil-
ter bank (graphBior(6, 6)) on that graph for the proposed
method. Note that the number of the downsampled lowpass
coefficients is the same as that of the critically sampled filter
banks, whereas the number of highpass coefficients are the
same as the input signal. The graph Laplacian pyramid uses
the same bipartite graph and the downsampling operation as
those of graphBior for the lowpass channel, in order to have
the equal number of lowpass coefficients.

The original signal is shown in Fig. 6(a). Table 1 com-
pares SNRs and the redundancy of the transforms. Figs. 6(c)–
(g) show the denoised signals. The graph-based transforms
outperform the regular wavelet transforms. The proposed
method is much better than the graphBior for all noise levels.
It also outperforms the graph Laplacian pyramid even though
their redundancies are the same.

5. CONCLUSION

This paper presented the oversampling method for graph sig-
nals. It appends nodes and edges to the original graph to
construct an oversampled GLM. We showed examples of the
oversampled graphs for arbitrary graphs. The experiments
were conducted on signal spreads and graph signal denois-
ing, and the proposed method, that implements the critically
sampled filter bank on the oversampled graph, outperformed
the other transforms.
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