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ABSTRACT

This paper presents a voice source modelling method employ-

ing a deep neural network (DNN) to map from acoustic fea-

tures to the time-domain glottal flow waveform. First, acous-

tic features and the glottal flow signal are estimated from

each frame of the speech database. Pitch-synchronous glottal

flow time-domain waveforms are extracted, interpolated to a

constant duration, and stored in a codebook. Then, a DNN

is trained to map from acoustic features to these duration-

normalised glottal waveforms. At synthesis time, acoustic

features are generated from a statistical parametric model, and

from these, the trained DNN predicts the glottal flow wave-

form. Illustrations are provided to demonstrate that the pro-

posed method successfully synthesises the glottal flow wave-

form and enables easy modification of the waveform by ad-

justing the input values to the DNN. In a subjective listening

test, the proposed method was rated as equal to a high-quality

method employing a stored glottal flow waveform.

Index Terms— Deep neural network, DNN, voice source

modelling, glottal flow, statistical parametric speech synthesis

1. INTRODUCTION

Statistical parametric speech synthesis, or hidden Markov

model (HMM) speech synthesis [1,2], is a flexible framework

for synthesising speech. It has several attractive properties,

such as the ability to vary speaking style and speaker charac-

teristics, small memory footprint, and robustness. However,

HMM-based speech synthesis suffers from lower speech

quality than the unit selection approach [3] and this is thought

to stem mainly from three factors: a) over-simplified vocoder

techniques, b) acoustic modelling inaccuracy, and c) over-

smoothing of the generated speech parameters [2]. This

paper addresses the problem of over-simplified vocoders by
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introducing a new voice source modelling method using a

deep neural network (DNN).

One of the key factors in improving the quality of sta-

tistical speech synthesis has been the development of better

excitation modelling techniques. The earliest vocoders used

a train of impulses [4] located at the glottal closure instants

to model voiced excitation. The quality of this impulse-train-

excited speech is poor with a buzzy sound quality due to the

zero-phase character of the excitation. Several improvements,

such as mixed excitation [5] and two-band excitation [6], have

been introduced to alleviate this effect by mixing periodic ex-

citation with aperiodic noise. Mixed excitation is used in,

e.g., STRAIGHT [7,8], which is one of the most widely used

vocoders in HMM-based speech synthesis. Voiced excitation

has also been improved by using a closed-loop training ap-

proach [9,10] or parametric models of the glottal flow [11,12].

The natural excitation of voiced speech, the glottal flow,

is difficult to represent as a compressed parametric vector

suitable for statistical parametric modelling. Therefore, sam-

pling approaches that utilise the excitation waveform per se

have been proposed that capture the detailed characteristics

of the signal. This idea is not new (see e.g. [13–15]), but the

development of statistical parametric synthesis has given rise

to several novel excitation methods based on natural speech

samples. For example, in [16, 17], a glottal flow pulse es-

timated from natural speech (using glottal inverse filtering)

is manipulated in order to construct a more natural excita-

tion signal. In [18–21], principal component analysis (PCA)

is applied to pitch-synchronous residual/glottal flow signals

to represent the excitation waveform. In [22, 23], a pitch-

synchronous residual/glottal flow codebook is constructed,

from which appropriate pulses are selected for synthesis.

Yet, sampling in the voice source domain exhibits some

challenges similar to those in the unit selection approach [21,

23], i.e., finding the best sequence of units that well matches

the given target specification and concatenate imperceptibly

together. Purely sampling-based approaches are, like unit se-

lection, inherently inflexible and limited by the available sam-

ples in the database: this limits the ability of the system to



change voice quality in a continuous manner, for example.

To overcome the above problems of using stored samples

without attempting to construct a fully parametric model of

glottal pulses (which has proved very challenging), we intro-

duce a novel voice source modelling technique that can be

considered as a compromise between waveform sampling and

parametric modelling. The method is based on predicting the

pitch-synchronous glottal flow directly in the time-domain by

using a DNN. The DNN is used to map the modelled speech

parameters to the actual excitation waveform, which can then

be used directly for synthesis in combination with predicted

vocal tract features. The proposed method has the flexibility

of a parametric model because it is able to generate variation

in the voice source waveform in response to changes in the

speech features. It also exhibits some of the advantages of

stored sample-based methods in that the predicted waveforms

contain more detail than parametric models.

The paper is organised as follows. First, DNNs in the

context of this work are introduced in Sec. 2, after which

the proposed DNN-based voice source modelling technique

is described in Sec. 3. Experiments using the new method

are described in Sec. 4, concentrating on DNN architecture

and training, and on the use of the proposed method in copy-

synthesis, voice source modification, and HMM-based syn-

thesis. Finally, Sec. 5 concludes the paper.

2. DEEP NEURAL NETWORKS

A DNN [24] is a feed-forward, artificial neural network that

has at least two layers of hidden units between input and out-

put layers. In this work, a DNN is used to build a map-

ping from extracted acoustic speech features to correspond-

ing glottal flow pulses. This is a regression problem, where

we are predicting continuously-valued outputs, so we chose a

linear activation function for the output (regression) layer and

sigmoid activation function units for the hidden layers. The

latter is defined as

vi = f(
∑

j

Wijxj + bi), (1)

where f(x) = 1/(1 + exp(−x)) is the sigmoid logistic func-

tion, Wij and bi are weights and biases, and xj and vi are

the input and output of the DNN, respectively. For the linear

layer, the activation function is simply

vi =
∑

j

Wijxj + bi. (2)

Restricted Boltzmann machine (RBM) pre-training can be

used to prevent over-fitting to the data, which aims at unsu-

pervised learning of the distributions of the input features.

Since the input acoustic features are real valued in this work,

a Gaussian–Bernoulli RBM [24] is employed for the visible

(input) layer. After optional pre-training, the DNN is trained

(“fine-tuned”) by back-propagating derivatives of a cost func-

tion that measures the discrepancy between the target outputs

and the actual outputs. In this work, mean squared error

(MSE) is used as the cost function. The error function is

E =
∑

j

(vj − v̂j)
2, (3)

where v̂j is the regression target for DNN training.

3. DNN-BASED VOICE SOURCE MODELLING

Recently, for both automatic speech recognition [24] and

speech synthesis [25], DNNs have shown improvements over

conventional HMMs. In this exploratory work, a DNN is used

in conjunction with a HMM-based system. The approach is

illustrated in Fig. 1. First, frame-wise acoustic features are

extracted from a database. In the feature extraction, iterative

adaptive inverse filtering (IAIF) [26] is used to decompose

the speech signal into a vocal tract filter and a voice source

signal. The extracted speech parameters include the vocal

tract linear prediction (LP) filter that is converted to a line

spectral frequency (LSF) representation, and parameters de-

scribing the properties of the voice source, i.e., fundamental

frequency (F0), frame energy, harmonic-to-noise ratio (HNR)

of five frequency bands, and voice source LP spectrum con-

verted to LSF. The extracted features, depicted in Table 1, are

then used to train a HMM-based synthesiser, as in [17].

The IAIF method produces an estimate of the voice source

signal from which individual glottal flow pulses are extracted.

To do this, glottal closure instants (GCIs) are detected from

the differentiated glottal flow signal using a simple peak

picking algorithm. This enables the extraction of two-pitch-

period, GCI-centred glottal flow pulses, delimited by two

other GCIs. The pulse segments are interpolated to a constant

duration of 25 ms (400 samples at 16 kHz sampling rate),

windowed with the Hann window, normalised in energy, and

stored in a codebook. The fixed duration of the pulses is

chosen as a compromise between minimising the amount of

data stored and limiting loss of spectral information.

Given the set of glottal pulses and corresponding vectors

of 47 acoustic parameters (Table 1), a mapping is established

by training the DNN. RBM pre-training is used to alleviate

over-fitting, after which back-propagation is applied. For syn-

thesis, both vocal tract and voice source parameters are gen-

erated from context-dependent HMMs, as in [17]. Instead of

using the source speech parameters to select a sequence of

stored pulse waveforms drawn from the codebook, we use the

complete set of 47 acoustic parameters as input to the DNN,

which outputs glottal flow derivative waveforms. The gen-

erated glottal flow pulses are interpolated to a duration cor-

responding to the required F0, scaled in energy, mixed with

noise according to the HNR measure, and overlap-added to

generate the excitation for synthesis. Alternatively, the DNN
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Fig. 1. Illustration of the proposed HMM-based speech synthesis

using DNN-based voice source modelling.

pulses can be used as a target for selecting the closest match-

ing stored glottal flow waveforms from the codebook (similar

to [23]). The latter method has two potential benefits: 1) the

natural codebook pulses preserve the detailed source wave-

form, and 2) the DNN target pulse prevents the selection of

spurious pulses from the codebook. The vocal tract filter al-

ready generated by the HMM is then used to filter the excita-

tion signal, producing synthetic speech.

4. EXPERIMENTS

4.1. Experimental setup

Two Finnish speech databases, male MV and female Heini,

recorded for the purpose of speech synthesis, were used in

the experiments. The male voice comprises 600 sentences

(approx. 1 h of speech) and the female database comprises

500 sentences. Both voices were sampled at 16 kHz.

The GlottHMM vocoder [17, 23] was used for extract-

ing the acoustic features and the glottal flow signal using

IAIF. Glottal flow pulse codebooks were constructed for

both databases in order to train the DNN-based voice source

Table 1. Acoustic features used for training the HMM-based syn-

thesis and the DNN-based voice source model.

Feature Number of parameters

Energy 1

Fundamental frequency 1

Harmonic-to-noise ratio 5

Voice source spectrum 10

Vocal tract spectrum 30

model. The codebooks contained 203,172 and 203,768 pulses

for the male and female speakers, respectively. Additionally,

smaller codebooks were constructed for both speakers from

20 sentences of speech material, in order to implement the

alternative method in which the DNN output is used to select

a natural pulse from the codebook; these codebooks consisted

only of 7,495 and 8,131 pulses in order to minimise computa-

tional cost at synthesis time. Previous experiments [23] have

shown that using a much larger codebook does not signifi-

cantly improve the synthesis quality. The standard HTS 2.1

method [27] was used for training the HMM-based system.

4.2. DNN training

The DNN as described in Sec. 2 is used. The input is the 47-

dimensional vector composed of the extracted acoustic speech

features listed in Table 1 and the target output is a 400 sample

duration normalised glottal flow pulse.

In order to determine the optimal number of layers and

hidden units for DNN, six different systems (A–F) were

trained by varying the number of hidden layers (from 1 to 3)

and the number of units per layer (from 800 to 1200). Unsu-

pervised RBM pre-training was tried for one configuration.

200,000 training examples were used for training with 3,000

examples for cross-validation. The training and development

errors for each system are presented in Table 2. The results

show that system F with 2 hidden layers and 1000 units per

hidden layer gave best results, with RBM pre-training slightly

improving performance (compare system F to system B).

4.3. Voice source modelling and modification

Copy-synthesis for unseen speech data (i.e., not in the train-

ing or validation sets) using the proposed method is illustrated

in Fig. 3, which shows the original (differentiated) excita-

tion estimated by IAIF from natural speech and the synthetic

DNN-based excitation generated from the extracted parame-

ters. In informal listening, the proposed voice source mod-

elling method produces natural sounding copy-synthesis, ei-

ther by directly using the DNN generated pulses or by using

them as a target to select pulses from the smaller codebook.

The advantage of predicting pulses with the DNN is the

ability to continuously adjust the glottal flow waveform in re-

sponse to the input acoustic features. Fig. 2 demonstrates this

ability (see last page): frame energy, F0, and HNR are varied

Hidden Units per Pre- Train Dev set

layers layer training error error

A 1 1000 No 0.411 0.499

B 2 1000 No 0.398 0.488

C 3 1000 No 0.400 0.489

D 2 800 No 0.404 0.493

E 2 1200 No 0.413 0.502

F 2 1000 Yes 0.394 0.485

Table 2. Training and development mean squared error (MSE) for

various DNN configurations.
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Fig. 3. Demonstration of the DNN-based excitation generation by

copy-synthesis of a Finnish male speech segment [vie]. The upper

signal (black) is the differentiated glottal flow estimated by IAIF.

The lower signal (red) is the excitation generated by DNN according

to the extracted features with noise mixed in according to HNR.

individually while other parameters are left unchanged, and

pulses are generated from the trained DNN. The pulse wave-

form displays a continuous and consistent change in response

to the varied speech parameter. For example, with low input

energy, the glottal pulse shows a less prominent peak at the

GCI whilst with high input energy the pulse has a very sharp

discontinuity at the GCI. Similarly natural behaviour is ob-

served also with F0 and HNR. This opens up possibilities for

more flexible voice source modification.

4.4. Subjective evaluation of HMM synthesis

In order to demonstrate the capability and assess the quality of

the proposed method, an online subjective evaluation was car-

ried out. Three different methods were chosen for compari-

son: 1) Conventional GlottHMM synthesis [17] using a single

natural glottal flow pulse of which spectrum is matched ac-

cording to the voice source LSF (Pulse), 2) DNN-based voice

source modelling (DNN), and 3) DNN-based voice source

model used as a target cost for selecting pulses from a code-

book (DNN-c). The latest single pulse GlottHMM was se-

lected for comparison since it has been found to be a reliable

method for producing high quality synthetic speech, and bet-

ter than STRAIGHT with male speech [17]. Thus, the base-

line method can be considered to represent state-of-the-art.

A comparison category rating (CCR) test was used, in

which pairs of stimuli are presented to participants, whose

task is to indicate the difference between the two samples on

a seven-point CMOS scale ranging from much worse (−3)

to much better (3). All three combinations of the systems

(1–2, 1–3, 2–3) were evaluated. 50 utterances were synthe-

sised from held-out data from both speakers and for each of

the three systems (300 stimuli in total). In order to reduce

the workload on participants, 10 sentences from both speak-

ers were randomly selected for each participant and presented

to them in each of the three system combinations. Thus each

participant rated a total of 60 stimuli pairs. Also the ordering

of the pairs of stimuli was randomised. 26 people (15 Finnish

and 11 non-Finnish) participated in the evaluation. The CCR

−1.0

−0.5

0.0

0.5

1.0

S
c
o
re

Pulse

DNN−c

DNN

Pulse

DNN−c

DNN

Pulse

DNN−c

DNN

Male Female All

Fig. 4. Results of the subjective evaluation.

test responses are summarised by calculating the mean score

for each method, which yields the order of preference and

distances between all the methods (i.e., the amount of pref-

erence relative to each other). The results of the CCR test,

plotted in Fig. 4, are encouraging in showing that both DNN-

based methods are rated as equal to the high-quality base-

line system. The differences in quality between the compared

systems are rather small due to the read-aloud voice quality.

With more expressive speech material the proposed methods

are expected to provide more advantage over the baseline.

5. CONCLUSIONS

This paper presented a voice source modelling method based

on predicting the time domain glottal flow waveform using a

DNN. In the experiments presented in this paper, the proposed

DNN-based method is shown to successfully generate acous-

tic feature-dependent glottal flow waveforms and to produce

high-quality HMM-synthesis, comparable to the state-of-the-

art methods. In addition to accurate voice source generation

in synthesis, the method offers possibilities for automatic or

manual voice source modification. In future work, the pro-

posed method will be assessed using more expressive speech

material where the new method is expected to show more ad-

vantage over conventional methods. Also the mapping from

the acoustic features to the glottal flow waveform will be fur-

ther studied by exploring different DNN architectures.
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