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ABSTRACT

In this paper, we consider a multi-input-multi-output

(MIMO) wiretap channel with a multi-antenna eaves-

dropper, where a private cooperative jammer is employed

to improve the achievable secrecy rate. The legitimate

user pays the legitimate transmitter for its secured com-

munication based on the achieved secrecy rate. We first

approximate the legitimate transmitter covariance matrix

by employing Taylor series expansion, then this secrecy

rate problem can be formulated into a Stackelberg game

based on a fixed covariance matrix of the transmitter,

where the transmitter and the jammer try to maximize

their revenues. This secrecy rate maximization problem

is formulated into a Stackelberg game where the jammer

and the transmitter are the leader and follower of the

game, respectively. For the proposed game, Stackelberg

equilibrium is analytically derived. Simulation results

are provided to show that the revenue functions of the le-

gitimate user and the jammer are concave functions and

the Stackelberg equilibrium solution has been validated.

Index Terms— MIMO system, physical-layer se-

crecy, private jammer, game theory, Stackelberg game.

1. INTRODUCTION

The concept of physical-layer security was originally

developed for wiretap channels in [1], and has recently

been recognized as a promising technology to estab-

lish a secured data transmission between a legitimate

transmitter and a legitimate receiver in wireless commu-

nication [2, 3].

The achievable secrecy rates in multi-antenna wire-

tap channels are constrained by the information rates

achieved by the eavesdroppers. In order to further im-

prove the secrecy rates, relays and jamming nodes have
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been introduced in the secrecy network, which have the

capability of improving the performance at the legitimate

receiver or preventing the eavesdroppers from intercept-

ing the messages intended for the legitimate users [4, 5].

Secure communication systems consists of different

nodes with different functionalities, and the interaction

among these nodes can be naturally captured by applying

game theory. Particularly, game theory provides a set of

mathematical tools for the design of future wireless and

communication networks, where different set of users

cooperate to achieve an optimal solution or compete be-

tween each other to benefit selfishly [6–9]. Stackelberg

game is one of the most important games, and has been

applied in Femtocell networks [10], where the jammer

is considered as the leader and the users follow the jam-

mers decision to maximize their revenues. In addition,

game theory has been widely used in security communi-

cations [11, 12].

This paper investigates a secrecy optimization problem

where a private cooperative jammer is employed to pro-

vide a jamming service and improve the secrecy rate

of the legitimate user. On the other hand, the legiti-

mate user pays the legitimate transmitter for its secured

communication based on the achieved secrecy rate. We

formulate this problem into a Stackelberg game, where

the transmitter and the private cooperative jammer try to

maximize their revenues. For this game, we investigate

a Stackelberg equilibrium solution where both the trans-

mitter and the cooperative jammer come to an agreement

on the interference requirement at the eavesdropper and

the interference price.

The remainder of the paper is organized as follows. The

system model and problem formulation are presented in

section II. Section III solves the proposed Stackelberg

game based secrecy rate maximization problem. Section

IV provide the simulation results to support the proposed

game, and finally conclusions are drawn in section V.

Notation: We use the upper case boldface letters for ma-

trices and lower case boldface letters for vectors. The

(·)H denotes conjugate transpose, whereas Tr(·) stands
for trace of a matrix. A � 0 indicates thatA is a positive



semidefinite matrix. ‖ · ‖2 denotes the Euclidean norm

of a matrix. I and (·)−1 denote the identity matrix with

appropriate size and the inverse of a matrix respectively,

whereas |A| denotes the determinant ofA.

2. SYSTEMMODEL

We consider a secrecy network with a MIMO wiretap
channel in the presence of a multi-antenna eavesdropper
as shown in Figure 1, where a jammer is employed to
improve the secrecy rate of the MIMO wiretap channel.
It is assumed that the the channel between the jammer
and the legitimate user is not available. The transmitter
employs this private jammer to introduce the interference
to the eavesdropper by paying for the jamming services.
In addition, it is assumed that the legitimate transmitter,

Fig. 1: A MIMO secrecy channel in the presence of multi-antenna eavesdropper
and with a private cooperative jammer.

the legitimate receiver and the eavesdropper are equipped
with NT , MR and ME antennas, respectively, whereas
the private jammer is equipped with only single antenna.
The channel coefficients between the legitimate transmit-
ter and the legitimate receiver as well as the eavesdropper
are denoted by Hs ∈ CMR×NT and He ∈ CME×NT , re-
spectively. On the other hand, g ∈ C

ME×1 represents
the channel coefficients between the cooperative jammer
and the eavesdropper. The received signals at the legiti-
mate receiver and the eavesdropper can be expressed as
follows:

yr=Hsx1 + nr, ye=Hex1 + gx2 + ne,

where yr and ye denote the received signal at the le-
gitimate receiver and the eavesdropper, respectively. In
addition, x1 ∈ CNT×1 is the signal intended for the legit-
imate user, whereas x2 represents the jamming signal to
confuse the eavesdropper. The vectors nr ∈ C

MR×1 and
ne ∈ CME×1 are the noises at the legitimate receiver and
the eavesdropper, and they are assumed to be zero-mean
circularly symmetric Gaussian random variables with co-
variance matrices σ2

sI and σ2
eI, respectively. The trans-

mit covariance matrices of the transmitter is defined as
Q1 = E

{

x1x
H
1

}

. Thus, the achievable secrecy rate is

defined as follows:
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where p1 is the power allocation at the jammer.

3. SECRECY RATE MAXIMIZATION BASED ON

STACKELBERG GAME

In this section, we solve the secrecy rate maximiza-

tion problem based on Stackelberg game in the security

network as shown in Figure 1. This jammer introduces

the interference to the eavesdropper which is listening

the communication between the transmitter and the re-

ceiver. However, the private cooperative jammer charges

for this jamming service based on the amount of inter-

ference caused to the eavesdropper. Here, we are only

interested in optimizing the power allocation at the pri-

vate jammer which determines the cost needed to be paid

by the legitimate transmitter. Hence, the private jammer

is considered with a single antenna. In the case of mul-

tiple antennas at the private jammer, the corresponding

beamformer will be designed independently. Hence the

scenario with multiple antennas with a fixed beamformer

can be formulated into the same problem as with a single

antenna. We formulate this problem into a Stackelberg

game and then investigate the Stackelberg equilibrium for

the proposed Stackelberg game [6].

3.1. Stackelberg Game

As shown in Figure 1, the objective of the private jam-
mer is to maximize its revenue by selling the interference
to the transmitter. The revenue of the jammer can be de-
fined as follows:

Uj(p1, µ0) = µ0p1‖g‖
2

2, (1)

where µ0 is the unit interference price charged by the pri-
vate jammer to cause the interference to the eavesdropper.
According to the interference requirement at the eaves-
dropper, the interference price should be decided by the
jammer to maximize its revenue. The optimal interfer-
ence price can be obtained by solving the following prob-
lem:
Problem (A):

max
p1,µ0

Uj(p1, µ0), s.t. p1 ≥ 0, µ0 ≥ 0. (2)

On the other hand, the legitimate transmitter should max-
imize its revenue by introducing the price for the achieved
secrecy rate at the legitimate user. The revenue function



of the transmitter can be defined as follows:

UL(Q1, p1) = λ0Rs−µ0p1‖g‖
2

2=λ0
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where λ0 and Rs are the unit interference price and the
achieved secrecy rate, respectively. Hence, the transmit-
ter should design the transmit covariance matrix and de-
cide the interference requirement to maximize its rev-
enue. This problem can be formulated as follows:
Problem (B):

max
Q1,p1

UL(Q1, p1), s.t. Q1 � 0, p1 ≥ 0. (4)

Problem (A) and Problem (B) can form a Stackelberg

game, where the cooperative jammer (leader) announces

the interference price and then the legitimate transmit-

ter (follower) decides the amount of the interference re-

quired at the eavesdropper. The solution of this game can

be obtained by investigating the Stackelberg equilibrium

points, where the legitimate transmitter and the cooper-

ative jammer come to an agreement on the interference

requirement and the interference price. The deviation of

either the legitimate transmitter or the cooperative jam-

mer from the equilibrium point will introduce the loss in

their revenue functions.

3.2. Stackelberg Equilibrium

The Stackelberg equilibrium for the proposed game is
defined as follows:
Stackelberg equilibrium: Let Q∗1 and p∗1 be the optimal
solution for the Problem (B)where µ∗0 is the best price for
the Problem (A). The solutions Q∗1, p

∗
1 and µ

∗
0 define the

Stackelberg equilibrium point if the following conditions
are satisfied for any set ofQ1, p1 and µ0:

UL(Q
∗
1 , p

∗
1, µ

∗
0)≥UL(Q1, p1, µ

∗
0)

Uj(Q
∗
1, p

∗
1, µ

∗
0)≥Uj(Q

∗
1, p

∗
1, µ0). (5)

3.3. Stackelberg Equilibrium Solution

In order to obtain the Stackelberg equilibrium so-
lution, the best response of the follower (the legitimate
transmitter) and the leader (the jammer) should be ob-
tained by solving Problem (B) and Problem (A), respec-
tively. Since, the leader (the jammer) derives the optimal
interference price for the interference requirement from
the legitimate transmitter, the best response of the fol-
lower (the legitimate transmitter) should be first derived
in terms of the interference price. For the proposed game,
Stackleberg equilibrium can be derived by obtaining first
Q∗1 and p∗1 from Problem (B), and then by obtaining the

best interference price µ∗0 from Problem (A). The best
response of the legitimate transmitter can be obtained by
solving the problem in (4), which is not jointly convex in
terms ofQ1 and p1. Hence, we divide this original prob-
lem into two sub-problems where transmit covariance
matrix of the legitimate transmitter Q1 and the power
allocations p1 at the private cooperative jammer are de-
termined separately for the proposed game.
First, we investigate the design of the covariance ma-
trix of the legitimate transmitterQ1 without the jammer,
where Q1 will be optimized by using Taylor series ex-
pansion [13]. Thus, we first rewrite the secrecy rate
maximization problem without the jammer as follows:

max
Q1�0

log |I+
1

σ2
s

HsQ1H
H
s |−log |I+

1

σ2
e

HeQ1H
H
e |

s.t. Tr(Q1) ≤ P1,Q1 � 0. (6)

The objective function of (6) which is not convex in
terms ofQ1, however, it can be approximated as follows:

max
Q1�0
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,

s.t. Tr(Q1) ≤ P1,Q1 � 0. (7)

It can be easily verified that the problem in (7) is convex,

and hence Q̃1 can be obtained iteratively by solving the

problem (7). Here, we consider two initializations (i.e.,

Q̃1 = 0). Based on this initialization, we propose an

iterative algorithm to optimize the transmit covariance

matrixQ1 in the following table:

Table I: Iterative algorithm for secrecy rate maximization

1. Initialize: Q̃1 = 0.

2. Repeat
(a) Solve the problem in (7) to obtainQ∗1.

(b) Update Q̃1 ← Q∗1.

3. Until the required accuracy.

By exploiting the iterative algorithm, we can obtain the

solution of the problem in (7). Then we consider the so-

lution of power allocation p1 for a givenQ1. To this end,

the following lemma holds for a fixedQ1:

Lemma 1: The problem in (4) for a fixed Q1 is a convex

problem in terms of p1.

Proof: Please refer to [14]. �

Since the problem in (4) is convex, the optimal solution

p∗1 should satisfy the following KKT condition:

∂UL(Q1, p1)

∂p1
=0, λ0Tr[A

−1
1 ggH−A−1

2 ggH ]−µ0‖g‖
2
2=0,

(8)



where

A1=
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p1

σ2
e

ggH

)

,A2=I+
1

σ2
e

(HeQ1H
H
e +p1gg

H).

From the above KKT conditions in (8), we obtain the

closed form solution of p1 as follows:

p
∗
1 =

− c1+c2
σ2
e

+

√

(c1−c2)2

σ4
e

+
4λ0c1c2(c1−c2)

µ0‖g‖2

2
c1c2
σ4
e

, (9)

where c1 = gHg, c2 = gHA−1g and A = I +
1
σ2
e

HeQ1H
H
e , and the proof is provided in [14]. Then,

the best response of the private cooperative jammer can

be obtained for a given interference requirement (i.e., p1)

by solving the following problem:

max
µ0

Uj(p
∗
1, µ0), s.t. µ0 ≥ 0. (10)

Since we have obtained the closed form solution of p1
in (9), the optimal closed-form solution of µ0 can be de-

rived.

Lemma 2: The problem in (10) for a fixedQ1 is a convex

problem in terms of µ0, and the optimal solution of µ0

can be expressed as

µ∗0 =
e

x‖g‖2
, (11)

where

x = −

d‖g‖2

2a −
b
2‖g‖4

4a2 + b‖g‖2

2a

√
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4a2

‖g‖2

2a

‖g‖2

4a

= −2(d− b2 − b
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b2 − d)

= 2
√

b2 − d(
√

b2 − d+ b) (12)

where a = c1c2
σ4
e

, b = c1+c2
σ2
e

, d = (c1−c2)
2

σ4
e

and e =

4λ0c1c2(c1−c2).
Proof: Please refer to [14]. �

Hence, both revenue functions of the legitimate transmit-

ter and the private jammer are concave in terms of p1
and µ0, respectively, for a fixed Q1. This confirms that

there is a Stackelberg equilibrium (p∗1, µ
∗
0) for this game.

To achieve this Stackelberg equilibrium, first, the jam-

mer announces a relatively low interference price µ0, for

which the legitimate transmitter determines the optimal

interference requirement at the eavesdropper. Then, the

private jammer increases the interference price by a small

amount provided its revenue function increases with the

interference price. Otherwise, it will reduce the interfer-

ence price by a small amount. This procedure will be

carried out until the maximum of the jammer’s revenue

function is achieved which is a Stackelberg equilibrium

solution. The deviation from this equilibrium point will

cause loss to both the legitimate transmitter and the jam-

mer. Hence, both of them will have the same strategy to

maximize their revenues.

4. SIMULATION RESULTS

In order to validate our theoretical results and pro-

posed algorithms, we consider a secrecy network in the

presence of an eavesdropper as shown in Figure 1. To

evaluate the performance of the proposed algorithms, it

is assumed that the legitimate transmitter and the cooper-

ative jammer are equipped with four (NT = 4) antennas
whereas the legitimate receiver and the eavesdropper con-

sist of three (MR = ME = 3) antennas. The maximum
available transmission power at the legitimate transmit-

ter is considered to be 5. The channel coefficients (i.e.,

Hs, He and g) are generated using zero-mean circularly

symmetric independent and identically distributed Gaus-

sian random variables. The noise covariance matrices at

the legitimate receiver and the eavesdropper are assumed

to be identity matrices.

We evaluate the Stackelberg equilibrium of the proposed

game. Figure 2 depicts the revenue function of the le-

gitimate user in terms of interference requirement of p1.

In addition, this result confirms that the revenue function

of the legitimate user is concave in terms of p1 with dif-

ferent channels. On the other hand, Figure 3 represents

the revenue function of the private cooperative jammer

for different interference prices. As observed in Figure

3, the revenue function of the private cooperative jammer

is also concave in terms of µ0. Figure 4 shows the op-

timal revenue function of the legitimate transmitter for a

given µ∗0, and then corresponding optimal value p
∗
1 can be

obtained, hence, (p1∗, µ∗0) defines the Stackelberg equi-
librium point as indicated in Figure 4. In addition, the

deviation of legitimate user or the private jammer from

this equilibrium points will introduce loss in their rev-

enue function.

0 2 4 6 8 10
32

34

36

38

40

42

44

46

48

50

52

Interference power p
1

R
e
v
e
n
u
e
 f
u
n
c
ti
o
n
 o

f 
le

g
it
im

a
te

 t
ra

n
s
m

it
te

r

Channel 1

Channel 2

Channel 3

Channel 4

Fig. 2: Revenue function of the legitimate transmitter
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Fig. 4: Optimal revenue function of the legitimate transmitter

5. CONCLUSION

In this paper, a secrecy rate maximization game is

proposed where a private cooperative jammer provides

jamming service. This problem was formulated into a

Stackelberg game and Stackelberg equilibrium solution is

derived for the proposed game. Simulation results have

been provided for the proposed Stackelberg game and

these results confirm that both the revenue functions of

the legitimate transmitter and the private cooperative jam-

mer are concave and from which the Stackelberg equilib-

rium solution is obtained for the proposed game.
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