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ABSTRACT

Estimation of instantaneous frequency of narrowband com-

plex sinusoids is often performed using lightweight algo-

rithms called adaptive notch filters. However, to reach high

performance, these algorithms require careful tuning. The

paper proposes a novel self-tuning layer for a recently intro-

duced adaptive notch filtering algorithm. Analysis shows that,

under Gaussian random-walk type assumptions, the resulting

solution converges in mean to the optimal frequency estima-

tor. A simplified one degree of freedom version of the filter,

recommended for practical applications, is also proposed. Fi-

nally, a comparison of performance with six other state of the

art schemes is performed. It confirms the improved tracking

accuracy of the proposed scheme.

Index Terms— adaptive notch filtering, adaptive signal

processing, frequency tracking

1. INTRODUCTION

Consider the problem of estimating an unknown slowly time-

varying frequency ω(t) of a narrowband complex sinusoid

(cisoid) using noisy measurements

y(t) = s(t) + v(t) , (1)

where t = 0, 1, . . . denotes discrete time, v(t) is a wideband

measurement noise,

s(t) = a(t)ej
∑

t
τ=1

ω(τ) (2)

is a nonstationaty complex sinusoid with instantaneous fre-

quency ω(t) and

a(t) = m(t)ejφ0 ,

where m(t) is a real valued slowly time varying amplitude

and φ0 denotes initial phase.

Instantaneous frequency of a nonstationary signal may be

estimated using a range of tools, e.g. short time Fourier trans-

form (STFT), superresolution methods such as MUSIC or

ESPRIT [1], extended Kalman filters [2] adaptive notch fil-

ters [3–6] and many others [7]. Regardless of one’s particular
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choice, he or she is immediately faced with the problem of

adjusting various algorithm’s parameters (such as local ana-

lysis window length, adaptation gains, etc.) so as to achieve

the optimal, or at least acceptable, frequency tracking accu-

racy. Since repeated tuning may be necessary (e.g. when the

signal to noise ratio changes), it is desirable to extend the es-

timation tool with means capable of automatic adjustment of

its parameters.

The paper develops such a solution for a recently pro-

posed adaptive notch filter. Theoretical analysis shows that,

under Gaussian random-walk type assumptions, the proposed

scheme locally converges in mean to the optimal values of

adaptation gains.

2. SELF TUNING ADAPTIVE NOTCH FILTER

2.1. ANF algorithm and its properties

We will start with the following ANF algorithm, introduced

in [8]1

f̂(t) = ej[ω̂(t−1)+α̂(t−1)]f̂(t− 1)

ε(t) = y(t)− â(t− 1)f̂(t)

â(t) = â(t− 1) + θ3f̂
∗(t)ε(t)

α̂(t) = α̂(t− 1) + θ1δ(t)

ω̂(t) = ω̂(t− 1) + α̂(t− 1) + θ2δ(t)

δ(t) = Im

[

ε(t)

â(t− 1)f̂(t)

]

(3)

where f̂(t) is a phase term, ǫ(t) is the prediction error, ∗
denotes complex conjugation, the quantities â(t), ω̂(t) and

α̂(t) are the estimates of the signal’s complex ‘amplitude’,

instantaneous frequency and instantaneous frequency rate

[α(t − 1) = ω(t) − ω(t − 1)], respectively. The parame-

ters θ1 > 0, θ2 > 0, θ3 > 0, θ1 ≪ θ2 ≪ θ3, are small

adaptation gains, determining the rates of amplitude adap-

tation, frequency adaptation and frequency rate adaptation,

respectively.

1The original formulation used the symbols γα, γω , µ, rather than θ1, θ2,

and θ3.



As shown in [8], the algorithm (3) has very good statisti-

cal properties. Under the following assumptions:

(A1) Instantaneous frequency drifts according to the 2-nd or-

der random walk (also called integrated random walk)

ω(t) = ω(t− 1) + α(t− 1)

α(t) = α(t− 1) + w(t) , (4)

where {w(t)} forms a stationary zero-mean Gaussian white

noise sequence, w ∼ N (0, σ2
w),

(A2) The sequence {v(t)}, independent of {w(t)}, is a circu-

lar complex Gaussian white noise, v ∼ CN (0, σ2
v),

(A3) The magnitude of the s(t) is constant, |s(t)| ≡ a0,

a proper choice of the gains θ1, θ2, θ3 can turn the algorithm

(3) into a statistically efficient frequency tracker.

Unfortunately, in practice it is not easy to tell when the

filter (3) reaches the best frequency tracking accuracy. While

one may be tempted to evaluate its performance using mean

squared prediction error, this usually leads to underperfor-

mance – the settings which minizmize prediction errors differ

from those which minimize frequency tracking error [8].

In [9] it was shown that frequency tracking accuracy of

the filter (3) may be evaluated using mean squared values of

the following signal

ξ(t) =
1− 2q−1 + q−2

θ2 + (θ1 − θ2)q−1
ω̂(t) , (5)

where q−1 denotes the backward shift operator, q−1u(t) =
u(t − 1). Note that ξ(t) may be obtained without any prior

knowledge of the true values of ω(t). This makes (5) useful

for on-line optimization.

2.2. Self tuning mechanism

Taking advantage of (5) we will design an automatic tuning

scheme with an aim of minimizing the following measure of

fit

J(t) = J(t; θ) =
1

2
ξ2(t) , (6)

where θ = [θ1 θ2 θ3]
T is the vector of adaptation gains.

Our design will employ the stochastic gradient approach

θ̂(t+ 1) = θ̂(t)− g
∂J(t)

∂θ
, (7)

where g > 0 is a small gain,

∂J(t)

∂θ
=

[

∂J(t)

∂θ1

∂J(t)

∂θ2

∂J(t)

∂θ3

]T

= ξ(t)x(t)

and x(t) = [x1(t) x2(t) x3(t)]
T = ∂ξ(t)/∂θ.

To arrive at analytical expressions for x1(t), x2(t), x3(t)
the following result from [9] can be applied. Let e(t) =
−Im [v(t)s∗(t)/a20]. Using the approximating linear filter

(ALF) method – a linearization approach proposed in [3] for

the purpose of analyzing adaptive notch filters – one can show

that

ω̂(t) =
θ2 + (θ1 − θ2)q

−1

D(q−1; θ)
u(t) , (8)

where

u(t) = ω(t) + (1− q−1)e(t)

D(q−1; θ) = 1 + d1q
−1 + d2q

−2 + d3q
−3 , (9)

d1 = θ1 + θ2 + θ3 − 3, d2 = 3− 2θ3 − θ2 and d3 = θ3 − 1.

Using (8) one can rewrite (5) in the following form

ξ(t) = −d1ξ(t− 1)− d2ξ(t− 2)− d3ξ(t− 3)

+ u(t)− 2u(t− 1) + u(t− 2) . (10)

Differentiating (10) and using basic facts from the linear fil-

tering theory leads to the below recursive equations

x1(t) = −d1x1(t− 1)− d2x1(t− 2)− d3x1(t− 3)

− ξ(t− 1)

x2(t) = x1(t)− x1(t− 1)

x3(t) = x2(t)− x2(t− 1) . (11)

Combining all the partial results derived so far, i.e. (3), (7)

and (11), one can obtain the sequential self-tuning adaptive

frequency tracker summarized in Table 1. In the next section

we will show that, under Gaussian assumptions, the proposed

extenion makes the adaptation gains converge in mean to their

optimal values.

3. CONVERGENCE ANALYSIS

3.1. Associated ODE

Under small values of g, behavior of the proposed algorithm

can be studied by analyzing properties of its associated ordi-

nary differential equation (ODE). Let Ωs denote the stability

region of the proposed scheme and {ξ(t; θ)}, {x(t; θ)} de-

note the stationary processes ξ(t), x(t) which settle down for

a constant value of the parameter vector θ ∈ Ωs. Denote by

θ∗ the stationary point of the proposed self-optimization loop,

i.e. the point in Ωs which satisfies

F (θ∗) = 0 , (12)

where

F (θ) = E[ξ(t; θ)x(t; θ)] (13)

and E[·] denotes expected value.

The linearized ODE associated with the proposed algo-

rithm takes the form

Ẋs = −gf(θ∗)Xs , (14)

where s denotes continuous time, Xs = θ(s)− θ∗, and

f(θ) =
∂F (θ)

∂θ
. (15)



Adaptive frequency tracking

f̂(t) = ej[ω̂(t−1)+α̂(t−1)]f̂(t− 1)

ε(t) = y(t)− â(t− 1)f̂(t)

â(t) = â(t− 1) + θ̂3(t)f̂
∗(t)ε(t)

α̂(t) = α̂(t− 1) + θ̂1(t)δ(t)

ω̂(t) = ω̂(t− 1) + α̂(t− 1) + θ̂2(t)δ(t)

δ(t) = Im

[

ε(t)

â(t− 1)f̂(t)

]

Self-tuning

ξ(t) = −(1− θ̂1(t)/θ̂2(t))ξ(t− 1)

+ 1/θ̂2(t)[ω̂(t)− 2ω̂(t− 1) + ω̂(t− 2)]

x1(t) = −d1x1(t− 1)− d2x1(t− 2)− d3x1(t− 3)

− ξ(t− 1)

x2(t) = x1(t)− x1(t− 1)

x3(t) = x2(t)− x2(t− 1)

x(t) = [x1(t) x2(t) x3(t)]
T

θ̂(t+ 1) = θ̂(t)− gξ(t)x(t)

Table 1. Adaptive frequency tracker with self-tuning.

3.2. Stationary point

Our analysis will be performed under the assumptions (A1)-

(A3). Although (A1)-(A3) can be criticized as being some-

what unrealistic, they enable one to perform a meaningful

examination of the properties of the proposed scheme. Addi-

tional simulation experiments confirm that quantitative results

of the below analysis remain valid under relaxed assumptions.

Denote by θo the vector of optimal gains, i.e. such a value

of θ which minimizes the mean-squared frequency tracking

errors,

E[|∆̂ω(t)|2] → min .

where ∆ω(t) = ω(t)− ω̂(t).
We will first show that θo satisfies (12), i.e. it is a station-

ary point of the proposed self-tuning loop. Using basic results

from the theory of stochastic processes one can arrive at

F (θ) = [F1(θ) F1(θ) F3(θ)]
T

Fi(θ) =

∫ 2π

0

ejω(1− ejω)i−1

D(ejω ; θ)
Sξξ(e

−jω; θ)dω (16)

where i = 1, 2, 3, D(ejω ; θ) = D(q; θ)
∣

∣

q=ejω
and,

Sξξ(e
−jω ; θ) is the power spectral density of {ξ(t; θ)}.

To proceed forward we need the following result [9]:

when θ = θo the sequence ξ(t; θo) has special interpretation.

It holds that

ξ(t; θo) = u(t)− û(t|t− 1) , (17)

where û(t|t − 1) = E[u(t) | U(t − 1)] is the optimal (in the

mean-squared sense) one-step-ahead prediction of u(t) based

on the set of past observations of u(t), U(t − 1) = {u(t −
1), u(t − 2), . . . }. Due to this property it can be readily

concluded that ξ(t; θo) is white noise (see [10]), i.e. that

Sξξ(e
−jω; θo) =

σ2

2π
, (18)

where σ2 depends on σ2
e and σ2

w in a nontrivial way.

Combining (18) with the first integral of (16) one obtains

F1(θo) = −
σ2

2π

∫ 2π

0

ejω

D(ejω ; θo)
dω . (19)

The substitution z = ejω converts the integral (19) into the

following form

F1(θo) = −
σ2

2πj

∮

C

1

D(z; θo)
dz , (20)

where C denotes the unit circle. Since θo ∈ Ωs it holds that

D(z−1; θo) = D(q−1; θo)
∣

∣

q=z
= 1+d1z

−1+d2z
−2+d3z

−3

has all roots inside the unit circle. Consequently, D(z; θo) =
D(q−1; θo)

∣

∣

q−1=z
= 1 + d1z + d2z

2 + d3z
3 has all its roots

outside the unit circle. Therefore, by Cauchy’s residue the-

orem, F1(θo) = 0. Similar argument can be used to show

that F2(θo) = 0 and F3(θo) = 0. This confirms that θo is a

stationary point of the proposed self-tuning mechanism.

3.3. Convergence

Conclusions about convergence of the proposed algorithm

can by drawn by studying the matrix f(θo).
After quite tedious calculations it can be shown that [11]

f(θo) =
σ2

2π

∫ 2π

0

i(e−jω)iH(e−jω)dω

in(e
−jω) =

(1− e−jω)n−1

D(e−jω ; θo)
, n = 1, 2, 3 . (21)

Since the matrix under integral (21) is positive semidefinite

for ω 6= 0 and varies nonlinearly with ω, one can conclude

that f(θo) is positive definite. This means that (14) is stable.

Under some additional conditions, stated in [12], one ob-

tains the following result:

Proposition For any ǫ > 0 and g sufficiently small, there

exists a constant δ(g, ǫ) such that

lim sup
t→∞

P (||θ̂(t)− θo|| > ǫ) ≤ δ(g, ǫ)

where δ(g, ǫ) tends to zero as g tends to zero.



Adaptive frequency tracking

f̂(t) = ej[ω̂(t−1)+α̂(t−1)]f̂(t− 1)

ε(t) = y(t)− â(t− 1)f̂(t)

â(t) = â(t− 1) + θ̂(t)f̂∗(t)ε(t)

α̂(t) = α̂(t− 1) + θ̂3(t)δ(t)/8

ω̂(t) = ω̂(t− 1) + α̂(t− 1) + θ̂2(t)δ(t)/2

δ(t) = Im

[

ε(t)

â(t− 1)f̂(t)

]

Self-tuning

ξ(t) = −(1− θ̂(t)/4)ξ(t− 1)

+ 2/θ̂2(t)[ω̂(t)− 2ω̂(t− 1) + ω̂(t− 2)]

x(t) = −d1x(t− 1)− d2x(t− 2)− d3x(t− 3)

− [1 + θ̂(t) + 3/8θ̂2(t)]ξ(t − 1)

+ [2 + θ̂(t)]ξ(t − 2)− ξ(t− 3)

r(t) = ρr(t − 1) + x2(t)

θ̂(t+ 1) = θ̂(t+ 1)− ξ(t)x(t)/r(t)

Table 2. One degree of freedom normalized self-tuning adap-

tive frequency tracker.

3.4. One degree of freedom algorithm

The algorithm proposed in section 2 can be critized for being

somewhat bulky, as it employs three adaptation gains θ1, θ2,

θ3. Its simplified version, recommended for practical applica-

tions, can be obtained by reducing the number of degrees of

freedom from 3 to 1, i.e. by replacing the three gains θ̂1(t),

θ̂2(t), θ̂3(t) with a single parameter.

Experience with (3) suggest that the gains θ1 and θ2 can

be chosen as functions of θ3 (see [8] for details)

θ1 =
θ33
8

θ2 =
θ23
2

. (22)

The resulting ‘preoptimized’ algorithm, which additionally

employs normalization (the parameter 0 < ρ < 1 is a user-

depandent exponential forgetting constant which govern’s the

algorithms effective memory length; it is recomended that

ρ ∈ [0.999; 0.9999]), is summarized in Table 2

4. SIMULATION RESULTS

4.1. Stationary point

Table 3 compares steady-state means of the parameters θ̂1(t),

θ̂2(t), θ̂3(t) with the optimal ones for several values of non-

stationarity measure κ = a20σ
2
w/σ

2
v – see [8] for explanation

5000 10000 15000
0.12

0.14

0.16

0.18

0.2

θ̂
(t

)

t

Fig. 1. Typical (solid line) and averaged (dashed line) re-

sponse of the one degree of freedom scheme to a step change

of κ.

of the importance of this quantity. The results were obtained

using joint ensemble (50 realizations of {w(t)}, {v(t)}, t ∈
[0, 100000]) and time (t ∈ [30000, 100000]) averaging. In the

experiment the constant ρ was set to 0.9999. The parameters

of the signal were set as follows: a20 = 10, random initial

phase, σ2
v = 1 and σ2

w = κ/a20.

The results confirm that the proposed self-tuning scheme

converges in mean to the optimal adaptation gains. Minor

discrepancies observed in Table 3 can be attributed to insuf-

ficient amount of averaging, which was necessitated by long

execution times.

Fig. 1 shows typical and averaged behavior of the simpli-

fied scheme in response to a step change of the nonstationarity

measure κ from κ1 = 5 · 10−8 to κ2 = 5 · 10−7 at t = 10001
(the constant ρ was set to 0.99925). The proposed scheme

reacts to the change properly – by increasing adaptation gain.

4.2. Comparison with existing approaches

Performance of the simplified scheme was compared with

other approaches using the following two-mode signal

ω(t) =

{

0.3 for t < 3000
0.2 + 0.1 cos(2π(t− 3000)/Tω) for t ≥ 3000

a(t) = 3 + sin(2πt/Ta) , (23)

where Tω = 2000 and Ta = 1000 denote the periods of fre-

quency and amplitude modulations, respectively. The vari-

ance of wideband measurement noise was equal to σ2
v = 0.01.

The following algorithms were compared:

• Well tuned Regalia’s complex filter [4]. The optimal val-

ues of the filter’s parameters, i.e. the values which min-

imized the mean-squared frequency tracking error, were

found using exhaustive search.

• Well tuned modified complex plain gradient filter from

[5].

• Well tuned arctangent-based complex filter from [6].

• Well tuned ANF (3) with constant gains set according to

the rule (22).

• Simplified one-degree of freedom scheme proposed in the

paper. The algorithm employed ρ = 0.999.



κ E[θ̂1(t)] E[θ̂2(t)] E[θ̂3(t)] θ1,o θ2,o θ3,o
1 · 10−10 1.47 · 10−5 1.17 · 10−3 4.64 · 10−2 1.38 · 10−5 1.13 · 10−3 4.72 · 10−2

1 · 10−9 4.43 · 10−5 2.45 · 10−3 6.82 · 10−2 4.32 · 10−5 2.41 · 10−3 6.85 · 10−2

1 · 10−8 1.34 · 10−4 5.09 · 10−3 9.88 · 10−2 1.34 · 10−4 5.09 · 10−3 9.90 · 10−2

1 · 10−7 4.16 · 10−4 1.07 · 10−2 1.41 · 10−1 4.15 · 10−4 1.06 · 10−2 1.42 · 10−1

1 · 10−6 1.25 · 10−3 2.20 · 10−2 2.00 · 10−1 1.26 · 10−3 2.19 · 10−2 2.01 · 10−1

1 · 10−5 3.76 · 10−3 4.42 · 10−2 2.80 · 10−1 3.79 · 10−3 4.43 · 10−2 2.81 · 10−1

Table 3. Comparison of the steady-state means of the parameters θ̂1(t), θ̂2(t), θ̂3(t) with their optimal values for different values

of the nonstationarity measure κ.

Algorithm E[|∆ω̂(t)|2]
Regalia’s filter 7.77 · 10−7

Modified complex plain gradient filter 7.41 · 10−7

Arctangent-based complex filter 5.01 · 10−7

ANF (3) 2.69 · 10−7

Proposed sequential self-tuning estimator 2.17 · 10
−7

Sequential self-tuning estimator from [13] 3.00 · 10−6

Table 4. Typical mean-squared frequency tracking errors

yielded by the proposed one degree of freedom sequential

tracker and five other approaches.

• Self-tuning scheme from [13], which adjusts adaptation

gains of an ANF so as to minimize mean-squared signal

prediction errors yielded by the ANF.

Note that the comparison was fair, if not actually slightly

in favor of the constant-parameters schemes which were tuned

to yield their best performance. This could be done only be-

cause in the experiment the true values of frequency were

known. Since such a situation is unlikely to occur in practice,

the relative performance of the constant-parameter schemes is

somewhat optimistic.

Typical mean-squared frequency tracking errors yielded

by the algorithms, evalated for t ∈ [1000, 5000], are summa-

rized in Table 4. The proposed approach clearly outperformed

other solutions. The algorithm from [13] performs particu-

larly poorly, but this is not surprising given the fact that it is

designed to optimize signal tracking performance.

5. CONCLUSIONS

An automatic tuning mechanism was proposed for an adaptive

notch filtering algorithm. Under Gaussian assumptions, the

resulting scheme was shown to converge in mean to optimal

one. Simulations confirm that the proposed extension of the

adaptive filter can improve frequency tracking considerably.
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