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ABSTRACT

In this paper we suggest a new algorithm for Direction
of Arrival (DOA) estimation and signal separation using a
novel antenna element with a time variant radiation pattern.
With the suggested approach, signals arriving from various
spatial directions are acquired in this sensor with different
time varying signatures, due to the antenna’s continuously
changing radiation pattern. We show that if the radiation
pattern is varied in a periodical manner and sufficiently
fast compared to the bandwidth of the received signals,
then multiple sources of radiation can be detected and their
direction of arrival estimated. The suggested approach is
a novel alternative to array based signal processing, as it
allows to perform spatial processing tasks without exploiting
multiple sensing elements.

Index Terms— DOA, MUSIC, reconfigurable antenna

1. INTRODUCTION

Detecting and separating signals received from multiple
directions usually relies on array based signal processing.
The well known phased-array approach allows rapid and
accurate beam scanning, simply by electronic adjustment of
the phases of the individual elements [1]. An array of sensors
is also useful for signal direction of arrival (DOA) estimation.
For example, subspace approaches such as MUSIC [2] and
ESPRIT algorithms [3] are widely used for estimating DOA
of narrow-band signals. Despite the advantages of array-
based techniques, they have their limitations in terms of
degrees of freedom, as the number of different spatial sources
we are able to detect is upper bounded by the number of
sensors we utilize within the array.

In this paper we examine the possibility to perform DOA
estimation and source separation by continuously altering
the spatial response of a single sensor. In this way, we
obtain spatial diversity over time, rather than by using a set
of different elements, as is common with array based signal
processing. The goal is to increase functionality in terms
of number of sources that we can estimate and differentiate
between, and to reduce the front-end size by applying fewer
sensing elements.

The advantage of the suggested approach stems from
the continuity of the time axis, which allows obtaining a
continuum of spatial configurations, as opposed to the finite
dimensionality achieved with a limited number of elements
in array based approaches. Our main discussion concerns an
RF-based sensor (i.e., antenna). Yet, the suggested concept
can also be applied in additional contexts. For example, one
may continuously alter the spatial response of a microphone
in order to create different time-varying responses for acoustic
signals arriving from distinctive directions.

Traditionally, spatial variation of the antenna radiation
pattern can be achieved by simple mechanical scanning, i.e.,
by moving the feeder, the reflector, or the entire antenna
assembly [4]. Typical scanning rates in a mechanically
rotating system is no larger than a few tens of Hertz. The
shortcomings of a slowly rotating mechanical system are
obvious, in terms of maintenance and scanning rate. In
contrast, as we will show later on, we will usually require
variations in the rates of tens of kHz at least, which can only
be accomplished by an electrical means.

A more general approach to achieve radiation pattern
variability is with reconfigurable antennas, where a single
element characteristic can be altered through electrical,
mechanical, or other means [5]. By designing the current
distribution on the antenna structure, one can directly control
its spatial radiation pattern. A discussion on the hardware
aspects of the electrically reconfigurable element which we
propose, is postponed to a future paper. In this work we
explore options for altering the antenna radiation pattern,
focusing on signal processing approaches for performing
DOA and signal separation with such an element.

In a previous contribution [6] we examined the use of a
time-variable sensor in order to perform channel sounding. In
that work, continuous-wave (CW) signals were transmitted,
and the DOA, as well as the temporal impulse response of
the channel, were estimated using a variable length dipole
antenna. In that contribution, the transmitted signal was
known and constrained to be narrow-band, which simplified
the estimation process.

In this contribution we exploit the time-varying sensor to
resolve a different problem. Assuming that many, possibly
wide-band, signals are received at our time-variant sensor,



we estimate the DOA’s, and decompose the received signal
mixture into its individual components using the single
sensing element. Unlike to the problem treated in [6], we
have no control of the received signals, but we assume that
an upper bound on the bandwidth of any signal is known
a-priori. We show that if the reception pattern of the antenna
is altered periodically and sufficiently fast, we can separate
the mixture and estimate the DOA of each signal.

The outline of this paper is as follows. In Section 2
we state our problem, motivating the use of a time varying
antenna for spatial signal processing. In Section 3 we suggest
to alter the spatial response of our sensor in a periodic manner,
and show that by this approach the spatial processing task
takes on a simple mathematical form. In Section 4 we present
a simulation of a dipole antenna with a periodically time
varying response, showing that DOA estimation and mixture
decomposition can be accomplished with such an element.
Section 5 discusses future work direction and concluding
remarks follow in Section 6.

2. MOTIVATION

Let r(ϕl, θl) be the (possibly complex) reception gain of a
sensor due to stimulus arriving from azimuth angle ϕl and
elevation angle θl. The sensor response usually depends on
a variety of parameters. For example, for a dipole antenna
the response r(ϕ, θ) depends on the ratio between dipole
length and wavelength of the RF signal, and on the dielectric
properties of the antenna.

Let sl(t) be the lth signal arriving to the sensor from the
lth spatial direction, such that the received waveform at the
sensor is of the form y(t) =

∑L
l=1 r(ϕl, θl)sl(t). The L

arriving signals can describe the multipath effect in a channel
sounding problem [6]. In other applications, {sl(t)}Ll=1 can
represent waveforms due to distinct transmitters.

Our goal is to estimate the signals {sl(t)}Ll=1 and their
spatial arrival angles {ϕl, θl}. In our treatment, we assume
that the angles are constant during the observation interval.

Naturally, by receiving y(t) =
∑L

l=1 r(ϕl, θl)sl(t) which
is the sum of all spatial paths, there is no way to decompose
this mixture to its individual components without some
additional prior knowledge. In order to resolve this, as in [6],
we suggest to add time dependence to the spatial response
r(ϕl, θl), by continuously altering the spatial behavior of the
sensor.

Once the spatial response becomes time dependent, the
received signal model takes on the form

y(t) =
L∑

l=1

r(t, ϕl, θl)sl(t) =
L∑

l=1

rl(t)sl(t), (1)

where we define rl(t) , r(t, ϕl, θl) for brevity. If we have
prior knowledge of the time variable response of the sensor
for each possible direction, i.e., we have a database of all
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Fig. 1. Dipole antenna response for several choices of element
length D.

possible ‘spatial signatures’ {rl(t)}, then it may become
possible to decompose the mixture (1) into its individual
components {sl(t)}Ll=1, while estimating the arrival angles
{ϕl, θl} during the process.

3. DOA AND SIGNAL SEPARATION USING
PERIODICITY

In this section we show that by altering the radiation pattern of
the antenna in a periodic manner, then under mild conditions
on the signals and simple pre-processing steps, it becomes
possible to transform the mixture (1) into a linear measurement
model with a time invariant mixing matrix.

Assume that the antenna variable response is periodically
altered, with time period T . Hence, for any direction, the
spatial signatures are also periodic, i.e., for any lth DOA, and
∀n ∈ Z,

rl(t) = rl(t− nT ).

As an example, consider the radiation intensity of a thin
dipole antenna, which is given by [1]

µ ·
(
cos (πD cos θ)− cos (πD)

sin (θ)

)2

. (2)

Here µ, θ and D are, respectively, a current dependent
constant, elevation angle, and the length of the antenna
normalized by wavelength.

Assuming for simplicity that µ = 1, we plot in Fig. 1 the
dipole spatial response for all elevation angles, and for several
choices of the element length D.

In order to obtain the spatial signatures rl = r(t, θl)
we alter the length of the sensor. Note that since the dipole
antenna pattern is invariant in the azimuth direction, we
discuss here spatial estimation in terms of elevation angle
only. We assume that a q bit decoder will be utilized, which
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Fig. 2. Spatial signature obtained for signals arriving from
three different angles. The length of the dipole element is
time varying according to (3).

will periodically switch the length of the dipole between
N = 2q different lengths. Accordingly, the length D of the
sensor becomes time dependent, and takes on the form:

D(t) =
∑
m

N∑
n=1

nD0 · rect
(
t− n− 1

N
T −mT

)
, (3)

where D0 is the length increment and rect(t) is the support
function over [0, T/N ]. Using (2), we have that for a
wavefront arriving from angle θl, its spatial signature becomes

rl(t) =

(
cos (πD(t) cos θl)− cos (πD(t))

sin (θl)

)2

, (4)

with D(t) of (3). In Fig. 2 we show three such spatial
signatures which are obtained for three signals arriving
from θ1 = 20◦, θ2 = 50◦ and θ3 = 55◦, where we used
N = 25, D0 = 5/32, T = 1/20kHz .

3.1. From periodicity to standard form

Exploiting the periodicity of the {rl(t)}l functions, we can
express them using their Fourier series expansion, yielding
that the received signal y(t) of (1) is

y(t) =
L∑

l=1

∑
k

vl[k] exp(j2πfpkt)sl(t), (5)

where fp = 1/T is the rate in which we alter the radiation
pattern and vl[k] is the kth Fourier coefficient of the periodic
function rl(t). We note that for T -periodic and piece-wise
constant rl(t) of the form rl(t) =

∑
m

∑N−1
n=0 anrect(t −

nT/N−mT ), it is a manner of straightforward calculation to
show that the kth Fourier coefficient of rl(t) is proportional

to sinc(k/N)Ad[k], where Ad is the N -length DFT of {an}.
Taking a Fourier transform on both sides of (5) we thus have:

Y F (f) =
L∑

l=1

∑
k

vl[k]S
F
l (f − kfp),

implying that in the kth frequency band we have a weighted
sum of all impinging signals. By choosing scanning period T
such that the scanning rate fp is larger than twice the maximal
bandwidth of the received signals, the frequency bands will
not overlap. We summerize this in the following proposition:

Proposition 1 Assuming that for all L signals there is an
fmax such that SF

l (f) = 0 for all |f | ≥ fmax, and assuming
that the sensor’s spatial pattern is periodically varied with
period T satisfying 1/T = fp > 2fmax, then for any k0 ∈ Z
and f ∈

[(
k0 − 1

2

)
fp,

(
k0 +

1
2

)
fp
]

we have

Y F (f) =

L∑
l=1

vl[k0]S
F
l (f − k0fp).

Note that Prop. 1 resembles the Nyquist sampling theorem,
with the scanning interval, T , replacing the time-domain
sampling period. Under the conditions of Prop. 1, it is
possible to transform the measured signal y(t) of (1) into a
standard matrix form, which is usually obtained only with
an array of sensing elements, but here it is established with
a single, time-varying, sensor. Specifically, by demodulating
the kth band to baseband and low pass filtering, the resulting
signal

yk(t) = hLP (t) ∗ (y(t) exp(−j2πfpkt))

satisfies

yk(t) =
L∑

l=1

vl[k]sl(t). (6)

Repeating the process for K different bands, then with K ≥
L should produce enough equations to resolve the mixture.
A schematic of the suggested detection circuit is presented in
Fig. 3. Rewriting (6) in a matrix form for K different bands,
we obtain

y(t) = As(t) (7)

where y(t) = [yk0(t), . . . , ykK
(t)]

T are the signals from the
selected K bands, s(t) = [s1(t), . . . , sL(t)]

T is the vector
obtained by the impinging signals, and A ∈ CK×L is the
mixing matrix, with elements A[k, l] = vl[k].

As the directions of the impinging signals are not known
in advance, there are several possible approaches to estimate
the DOAs and the signals s(t).

• We may construct a dictionary matrix D ∈ CN×K̃ , with
K̃ ≫ K, that describes many possible directions of
arrival on a very fine grid. Thus, the matrix A of the valid
DOAs consists of a subset of columns of D. In this case,
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Fig. 3. Schematics of demodulating the different bands to
baseband, resulting in {yk(t)} of (6).

the model y(t) = Ds(t) has a sparse support solution
and it is possible to reconstruct the signals, and their
support (which indicates the DOAs) using sparsity based
approaches. Furthermore, as a sparse support pattern
is valid for all time instances, we can apply a multiple
measurement vector setting, as in [7].

• Another route to tackle our problem will be to view
(7) as a blind source separation problem (BSS), while
treating A as unknown mixing matrix. If we assume,
for example, that the impinging signals {sk(t)} are
statistically independent and non-Gaussian, then we can
rely on independent component analysis (ICA) techniques
to estimate the mixing matrix A and the signals [8], or
one of the many other methods to resolve BSS problems.

• Assuming that the signals {sk(t)} and the additive noise
are uncorrelated, we can apply the MUSIC technique
[2] for estimating the columns of A. Then, we can
reconstruct the signals as well, using a simple least
squares (LS) fit.

In this contribution we examine the third option.

4. SIMULATION

We simulate a dipole antenna sensor, with a periodically
altered length, as in (3). In practice, this can be accomplished
by electrical means, and we will discuss the implementation
in a future publication. In this example, by switching between
N = 32 different states, every T = 1/20kHz seconds, and
using antenna length increments of D0 = 5/32 we obtain a
variable and periodic spatial response, with maximal element
length of 5 wavelengths. As stated in Prop. 1, for this spatial
scanning rate signals with bandwidth fmax < 1

2T = 10kHz

will not be aliased. Assuming that the carrier frequency is
sufficiently high, we ignore the dipole frequency dependency
along the 10kHz bandwidth of the signals. We simulate
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L = 3 chirp signals arriving from three different directions to
the dipole antenna. The first, a chirp starting from frequency
of 0.5kHz and ending at 2kHz arrives to the sensor from angle
of θ = 20◦. The second signal is a chirp from 7kHz to 1kHz

arriving from θ = 50◦, and the third being a quadratic swept-
frequency signal, starting from 1kHz to 5kHz and arriving
from θ = 55◦.

By preprocessing the received signal at the antenna as
in Fig. 3, the model (7) results. In Fig. 4 we present a
spectrogram of the received signal mixture, as obtained from
the central frequency band.

To decompose our mixture and estimate the DOA we
use bands k = {−10, . . . , 10} around the central frequency.
Thus, we end up with K = 21 measurements, resulting
in an A ∈ C21×3 size matrix for the model (7). Adding
white Gaussian noise to the measurements we then apply the
MUSIC algorithm [2] for DOA estimation, at various SNR
conditions. For each SNR value we average over 100 Monte-
Carlo trials the obtained MUSIC pseudo spectrum. The latter
was calculated as PMUSIC(θi) = 10 log10 ∥Pnai∥−2, where
ai is the expected ith unit length response due to a signal
arriving from the ith angle, and Pn is the noise subspace
projection matrix. The vectors {ai} replace the notion of the
steering vectors in array-based signal processing, and were
constructed on a 0.5◦ grid of possible arrival angles. As a
conservative approach, we assume that the maximal number
of impinging signals is twice their actual amount, such that
the noise subspace was constructed from 21 − 2 × 3 = 15
eigenvectors. In Fig. 5 we plot the resulting pseudo-spectrum.
As can be seen, though at SNR of −10dB it is hard to
distinguish between the signals arriving from θ = 50◦ and
θ = 55◦, this becomes possible at larger values of SNR.

After obtaining the true arrival angles, we have an estimate
of the mixing matrix A of (7). Let x(t) = y(t) + n(t) be
the noisy measurements. Then, we obtain an estimate of the
impinging signals with a simple LS fit of the form ŝ(t) =(
AHA

)†
AHx(t), where ()

H and ()
† indicate Hermitian

transpose and the pseudo-inverse operator, respectively. In
Fig. 6 we plot the spectrograms of the signals separated from
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the mixture, as detected for an SNR of 10dB .

5. FUTURE WORK

In the future we intend to investigate (and implement) other
types of antennas that will allow us to achieve a time-variant
radiation pattern. The first candidate is likely to be the
leaky-wave antenna [9], a waveguide structure that radiates
energy to free space by leaking. Such a structure includes
continuous, discontinuous or periodic aperture that allows
radiation. In contrast to array antennas, leaky-wave antennas
do not require any complex feeding network; they are fed by
a simple transmission line or waveguide connection, while
offering directivity and scanning performances sometimes
comparable to those of arrays.

6. CONCLUSION

In this work we suggest to periodically alter the spatial
response of a single sensor (antenna) along time. In this
form, we obtain spatial variability along the time domain, as
opposed to classical array based signal processing techniques,
for which spatial variability is obtained along the different
elements of the array. The proposed approach relies on
periodicity of the radiation pattern and was applied in the
context of DOA estimation and signal unmixing. This
suggests that spatial processing tasks that were traditionally
implemented only with an array of elements, can now be
accomplished using a single time-variant sensor.
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