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ABSTRACT 
 
An effective feature compensation method is evaluated for reliable 
speech recognition in real-life in-vehicle environment. CU-Move 
corpus contains a range of speech and noise signals collected for a 
number of speakers under actual driving conditions. PCGMM-
based feature compensation, considered in this paper, utilizes par-
allel model combination to generate noise-corrupted speech model 
by combining clean speech and the noise model. In order to ad-
dress unknown time-varying background noise, an interpolation 
method of multiple environmental models is employed. To allevi-
ate computational expenses due to multiple models, applying a 
noise transition model is proposed, which is motivated from Noise 
Language Model used in Environmental Sniffing. The PCGMM 
method and proposed scheme are evaluated on the connected sin-
gle digits portion of the CU-Move database using Aurora2 evalua-
tion toolkit. Experimental results indicate that our feature compen-
sation method is effective for improving speech recognition in 
real-life in-vehicle conditions. Here, 26.78% of the computational 
reduction was obtained by employing the noise transition model 
with only slight change in recognition performance. 
 

1. INTRODUCTION 
Acoustic difference between training environments and conditions 
where actual speech recognition systems operate is one of the pri-
mary factors that degrade speech recognition accuracy, and the 
presence of background noise is one major factor. This is espe-
cially true for in-vehicle speech systems which face the problem of 
robust speech recognition in order to address a range of severe 
changing background noise conditions.  

This paper investigates the performance of our feature com-
pensation scheme in a real-life in-vehicle environment, with the 
goal of achieving low complexity in computation. CU-Move 
corpus has been built to develop reliable speech systems for in-
vehicle and it contains a range of acoustic signals expected to be 
observed during real-life car-driving [1]. The corpus has been used 
for research in multi-sensor array processing for noise suppression 
and speech recognition in cars [2]. Therefore, performance 
evaluation on CU-Move database can indicate the reliability and 
effectiveness of the targeted algorithm in actual in-vehicle condi-
tions.  In this study, our previously proposed PCGMM (Parallel Com-
bined Gaussian Mixture Model) based feature compensation 
method [3] is considered as a solution to address the background 
noise of in-vehicle conditions. PCGMM-based method employs 
model combination for noise-corrupted speech model and operates 
in the cepstral domain. By using model combination, the PCGMM 
scheme eliminates the prior training which requires a noise-
corrupted speech database, which is an absolute requirement in 
conventional data-driven methods. Independent access to the noise 

model makes its adaptation in the non-speech interval possible. 
The interpolation method employing multiple environmental noise 
models was also developed to address unknown or time-varying 
noise conditions [4]. In order to reduce the computational expense 
due to use of multiple models, we propose to employ a noise tran-
sition model for the multi-model approach, which is motivated 
from Noise Language Model in our previous work [5]. 

This paper is organized as follows. We first review the CU-
Move corpus used for this study in Sec.2. In Sec. 3, PCGMM-
based feature compensation method employed in our work will be 
discussed followed by multi-model approach for PCGMM method 
in Sec.4. We also discuss noise transition model in Sec.5.  Repre-
sentative experimental procedures and their results are presented 
and discussed in Sec. 6.  Finally, in Sec. 7, we conclude our work. 
 

2. CU-MOVE CORPUS 
The CU-Move project [1] is designed to develop reliable car navi-
gation systems employing a mixed-initiative dialog. This requires 
robust speech recognition across changing acoustic conditions. The 
CU-Move database consists of five parts; (i) command and control 
words, (ii) digit strings of telephone and credit numbers, (iii) street 
names and addresses, (iv) phonetically-balanced sentences, and (v) 
Wizard of Oz interactive navigation conversations. A total of 500 
speakers, balanced across gender and age, produced over 600GB 
of data during a six-month collection effort across the United 
States. The database and noise conditions are discussed in detail in 
[1]. We point out that the noise conditions are changing with time 
and are quite different in terms of SNR, stationarity and spectral 
structure. The challenge in addressing these noise conditions is that 
they might be changing depending on the car being used and the 
road. In this study, we selected 10 speakers from approximately 
100 speakers in Minn., MN (i.e., Release 1.1A) and employ the 
connected single digits portion that contains speech under a range 
of varying complex in-vehicle noise events/conditions. 
 

3. PCGMM-BASED FEATURE COMPENSATION 
The PCGMM-based feature compensation method is based on the 
speech model. The distribution of the clean speech feature x  in the 
cepstral domain is represented with a Gaussian Mixture Model 
(GMM) consisting of K  components as follows, 
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It is assumed that noisy environment degrades by moving the 
means and covariance matrices of the clean speech model, and the 
distribution of the noisy speech y  can be also expressed as, 
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In PCGMM-based method, the parameters of the noise-corrupted 
speech model 

ky ,μ  and  are obtained through parallel model 

combination (PMC) procedure using clean speech and noise mod-
els independently [3]. It is also assumed that there is a constant 
bias transformation of the mean parameters of the clean speech 
model in the cepstral domain under the additive noisy environ-
ment, which is the assumption generally taken by other data-driven 
methods as follows, 
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where the bias term is used for reconstruction of the speech 
features. The MMSE equation for reconstruction of the clean 
speech is approximated with Eq.(4) in a manner similar to [6]. 
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The posterior probability  can be calculated using the 
parameters of the noisy speech GMM 

)|( ykp
},,{ ,, kykyk ∑μω . Fig 1 pre-

sents the resulting block diagram of the PCGMM-based approach 
as described here. 

At this point, the distinguishing properties of the PCGMM-
based method are considered, and compared with prior techniques. 
First, our method does not require an additional training procedure 
using a noise-corrupted speech database.  After obtaining the esti-
mated noise model from the available noise samples, the distribu-
tion model of the noise-corrupted speech can be generated via the  
model combination procedure. This results in a compensation 
method without the need of prior training data as seen in existing 
data-driven methods. 

In the PCGMM method, estimation of the GMMs for clean 
speech, noise, and noisy speech as well as the reconstruction pro-
cedure are accomplished all in the cepstral domain.  The number of 
cepstral coefficients is generally smaller than for log-spectral coef-
ficients, therefore, our method has the explicit advantage of a 
lower dimensional space (e.g., reduced computation). In particular, 
the cepstral coefficients are less correlated with each other com-
pared to the same coefficients in the log-spectral domain, therefore 
it is reasonable to employ diagonal covariance matrices for the 
GMMs in representing the models. The movement from a full 
covariance matrix needed for the log-spectral domain to a diagonal 
covariance matrix in the cepstral domain has a major reduction in 
both computational costs and input data requirements for more 
accurate model estimation. 
 

4. PCGMM-BASED METHOD EMPLOYING 
MULTIPLE ENVIRNMENTAL MODELS 

In the PCGMM-based method, model adaptation can be applied in 
order to address the time-varying background noise. In such a 
framework, the noise model is updated during silence periods via 
adaptation followed by combination of models, which again more 
accurately reflects the true noise for the GMM of the noisy speech. 
Such a framework however, requires an accurate algorithm for 
silence detection and also needs considerable computational re- 

 
Fig. 1. Block diagram of PCGMM-based feature compensation method. 
 
sources due to the conversion between the linear spectrum, log 
spectrum and cepstral domain. Therefore, applying a model adap-
tation technique for the noise model may not be appropriate for 
small resource systems such as PDAs, navigation devices and 
other mobile systems. In this section, we consider the PCGMM-
based method that employs a combination of multiple environ-
mental models for low resource based ASR applications.  

Utilizing multiple models estimated off-line can be effective 
for compensating input features adaptively under time-varying 
noisy conditions and eliminating the need for additional silence 
detection and online model combination. In a multiple model 
method, the posterior probability of each possible environment is 
estimated over the incoming noisy speech. In our work, the feature 
reconstruction procedure is modified using a frame-by-frame for-
mulation for real-time processing by defining the sequential poste-
rior probability of the environment [4]. Given the incoming noisy 
speech feature vectors , the sequential poste-
rior probability of a specific environment GMM  among 
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ability of each environment i represented as a GMM. Based on 
Eq.(4), the clean feature at frame t  is reconstructed using the in-
terpolated compensation terms as follows, 
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where  is a constant bias term from the k th Gaussian compo-

nent of the e th environment model and  is the poste-
rior probability for environment . 
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When the background noise is from an environment where the 

number of unique types is finite, such as for in-vehicle conditions 
(e.g., engine noise, wind noise, turn signal noise, wiper blade noise, 
etc. [5]), the multiple-model method is more effective than adapta-
tion techniques or online estimation of noise components in terms 
of computational complexity. In time varying scenarios, it is also 
possible to employ Environmental Sniffing to detect, track, and 
characterize the noise types [5]. If a clean mixture model is con-
sidered as one of the multiple models, the performance of the 
recognition system can be maintained under high Signal-to-Noise 
Ratio (SNR) conditions. 



5. NOISE TRANSITION MODEL 
The amount of computation for model-based feature compensation 
depends primarily on the number of Gaussian components to be 
computed.  The computational expense increases in proportion to 
the number of multiple models employed for the model interpola-
tion method described in Sec.4. However, more accurate modeling 
for noisy conditions requires a larger number of GMMs with suffi-
cient sized pdfs. Now, we describe a noise transition model em-
ployed in an effort to reduce the computational complexity. 

The motivation is that there might be a smaller sized set of 
noise types among all types of noise, which we need to consider at 
a certain time frame or session when employing multiple noise 
models for PCGMM-based feature compensation. This can reduce 
the computational expenses. In the Environmental Sniffing scheme, 
a Noise Language Model was employed to decode the most likely 
sequence of noise types [5]. Here, the noise transition model is 
motivated from the noise language model. In order to build the 
noise language model, in-vehicle acoustic data (i.e., in a Blazer 
SUV) was collected during a 17-mile route driving which contains 
samples of all driving conditions expected for use in city and rural 
areas and then the primary noise conditions were identified as 
follows: 

(1) N1: idle noise, no movement, windows closed 
(2) N2: city driving without traffic, windows closed 
(3) N3: city driving with traffic, windows closed 
(4) N4: highway driving, windows closed 
(5) N5: highway driving, windows 2 inches open 
(6) N6: highway driving, windows half-way down 
(7) N7: windows 2 inches open in city traffic 
(8) NX: others 

A bigram type of noise language model was constructed using 
CMU-Cambridge Statistical Language Modeling (SLM) Toolkit. 
In this study, the connectivity among the noise conditions was 
employed for the transition model not considering transition prob-
abilities.  Fig 2 shows the noise transition model considered in this 
paper. 

The transition model is applied to the current speech input 
based on the type of noise observed at the previous utterance when 
the current speech was produced in a continuing driving condition 
from the previous utterance.  Suppose that the N4 condition (high-
way driving, windows closed) was determined at the previous 
utterance by the accumulated posterior probability, only four type 
conditions (N3, N4, N5, and NX) are considered for multiple envi-
ronmental models by setting the prior probabilities  in 
Eq.(6) of the other four conditions (N1, N2, N6, and N7) to zero 
according to the connectivity of noise transition model as shown in 
Fig.2. In this case, we expect to have a reduced computational 
expense comparing to case of not employing a noise transition 
model (i.e., fully connected noise models). 
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6. EXPERIMENTAL RESULTS 

As test data for performance evaluation, connected single digits 
portions from CU-Move corpus were selected.  They have an iden-
tical task to the Aurora2 evaluation framework so that Aurora2 
evaluation toolkit was used to evaluate system performance [7].  
The task is connected English-digits consisting of eleven words. 
Each whole word is represented by a continuous density HMM 
with 16-states and 3-mixtures per state. In addition to the digits, 
two silence models (i.e., normal silence and short pause) are used. 

The feature extraction algorithm suggested by the European 
Telecommunication Standards Institute (ETSI) was employed for 
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Fig. 2. Noise transition model. 
 
Table 1. Performance of baseline system and existing methods on CU-
Move Corpus. (WER, %) 

Baseline 64.77 
SS 55.13 
SS+CMN 40.39 
AFE 31.73 
VTS 33.52 
VTS+SS+CMN 26.33 

 
the experiments [8]. The 0th cepstral coefficient was used instead 
of log energy, for the sake of convenience in model combination 
implementation.  After extracting the 13th order cepstrum, the first 
and second order time derivatives are included during the decoding 
procedure (a total of 39 dimensional feature vector). 

The HMM parameters were estimated using 8,840 clean speech 
training samples included in Aurora2 and performance was evalu-
ated on the selected test set of CU-Move corpus.  The test set con-
sists of 464 utterances (length of 50.0min) spoken by 10 different 
speakers (5 males and 5 females) in real-life in-vehicle conditions, 
which were collected in Minneapolis, Minnesota [1]. Data was 
down-sampled to 8kHz and reflected a 9.50 dB SNR on average 
which was obtained by NIST Speech Quality Assurance software 
[9].  We used 8 different types of noise samples (total amount of 2 
hours) to train noise models, which were discussed in Sec. 5. 

The performance of the baseline system (no compensation) is 
examined with comparison to several existing preprocessing algo-
rithms in terms of environmental robustness for speech recognition. 
Spectral Subtraction (SS) and Cepstral Mean Normalization 
(CMN) were selected as conventional algorithms. They represent 
the most commonly used techniques for additive noise suppression 
and removal of channel distortion respectively. In spectral subtrac-
tion, the subtraction factor and flooring factor are set at 4.0 and 0.2 
respectively, and background noise is estimated using the mini-
mum statistics method with a time delay of approximately 
250msec. For cepstral mean normalization, the average value of 
the cepstrum over the current input utterance was subtracted from 
each frame. AFE (Advanced Front-End) algorithm developed by 
ETSI was also evaluated as one of state-of-the-art methods, which 
contains an iterative Wiener filter and cepstral histogram equaliza-
tion [10]. We also evaluated another feature compensation method, 
VTS (Vector Taylor Series) algorithm for performance comparison 
where the noisy speech GMM is adaptively estimated using the 
EM algorithm over each test utterance [6]. Table 1 demonstrates 
performance of the baseline system and existing algorithms. 

The performance of the PCGMM-based scheme was evaluated 
using identical conditions to the baseline test. The GMM of the 
clean speech for PCGMM was estimated using clean speech sam-
ples identical to those used for training the HMM.  The clean 
speech model consists of 128 Gaussian components with diagonal 
covariance matrices.  The noise model used for model combination 
has a single Gaussian model and its prior model was obtained by  



Table 2. Performance of PCGMM-based methods. 
 WER (%) Relative (%) 
PCGMM 62.31 3.80 
PCGMMm 33.64 48.06 
PCGMMm+SS+CMN 25.38 60.82 

 
Table 3. Performance of multi-model PCGMM-based methods. 

 WER (%) Relative (%) 
IM-PCGMM 34.08 47.38 
IM-PCGMM+SS+CMN 25.83 60.12 

 
offline-training. For the prior noise model for single model 
PCGMM, the noise signals from the type NX were used, which has 
connections between all other noise types. For comparison, we 
examined the performance in the following combinations: 
 (1) PCGMM: PGCMM-based feature compensation method us-
ing model combination of clean speech model and prior noise 
model trained off-line. 
(2) PCGMMm: the mean of noise model is updated with the sam-
ple mean of silence of each test utterance for PCGMM method. 
Approximately 200msec duration of the silence is assumed to exist 
prior to the beginning of speech in every test utterance. 
(3) PCGMMm+SS+CMN: PCGMMm method combined with 
Spectral Subtraction and CMN 

As presented in Table 2, the PCGMM-based feature compensa-
tion method is effective for in-vehicle conditions and superior 
performance of the PCGMM method is demonstrated compared to 
spectral subtraction combined with CMN in Table 1. The results 
prove that the model combination used for the estimation of noisy 
speech GMM is effective in representing the noise corruption proc-
ess. Relative improvement of 48.06% over baseline in WER was 
obtained through updating the mean of the noise model 
(PCGMMm), which is better or comparable to AFE and single 
VTS. PCGMMm method combined with spectral subtraction and 
CMN has a relative improvement of 60.82% in WER and it outper-
forms all other existing methods.   

Using the same setup, performance evaluation of the multi-
model schemes for PCGMM was also conducted.  In the interpola-
tion of multi-model PCGMM method, 9 types of noise models (N1, 
N2, … , N7, and NX including clean condition) were used for 
model combination to generate noisy speech GMMs. As presented 
in Table 3, we see that PCGMM-based feature compensation 
schemes with the interpolation method of multiple models are 
effective for the in-vehicle conditions, with superior performance 
over existing conventional algorithms. The PCGMM-based feature 
compensation with interpolated models (IM-PCGMM) presents 
comparable performance to the single adapted model approach 
(PCGMMm) which is shown in Table 2. This proves that interpo-
lation of multiple models is very effective for compensating the 
feature adaptively under blind noisy environments and changing 
noise types in every utterance.  A significant improvement was 
obtained by combining the IM-PCGMM method with spectral 
subtraction and CMN. 

Tables 4 and 5 present the performance of the IM-PCGMM-
based method employing the noise transition model described in 
Sec.5. The test utterances are submitted to the speech recognizer in 
the same time-order as recorded in-vehicle. With the noise transi-
tion model, for a particular speaker, it is determined which noise 
types are considered for the current utterance for multiple envi-
ronmental models, based on the noise condition which has the 
highest score (a posteriori) at the previous utterance. From Table 4,  

Table 4. Performance of multi-model PCGMM-based methods with Noise 
Transition Model. 

 WER (%) Relative (%) 
IM-PCGMM 33.86 47.72 
IM-PCGMM+SS+CMN 25.98 59.89 

 
Table 5. Computational reduction of multi-model PCGMM-based methods 
by employing Noise Transition Model. 

 # of Activated 
Noise Models  

Computational 
Reduction (%)

IM-PCGMM 6.22 30.89 
IM-PCGMM+SS+CMN 6.59 26.78 

 
the IM-PCGMM with the noise transition model demonstrates a 
comparable performance compared to the case of fully-connected 
noise model in Table 3. In order to investigate the relationship 
between performance and computational expense brought by em-
ploying noise transition model, the average number of activated 
noise models and resulting computational reduction are presented 
in Table 5. The computational reduction was calculated comparing 
to the fully connected noise model which has 9 numbers of acti-
vated conditions. From the results, it was found that employing 
noise transition model is useful for reducing the computational 
complexities while holding the original performance at comparable 
levels.   
 

7. CONCLUSIONS 
In this paper, we evaluated the PCGMM-based feature compensa-
tion method on the CU-Move corpus which contains a range of 
background noise observed in real-life in-vehicle conditions. To 
reduce the computational complexity, employing a noise transition 
model was proposed for a multiple model approach. Experimental 
results demonstrate that our feature compensation is effective in 
accomplishing reliable and efficient speech recognition in actual 
in-vehicle environments. 
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