
MINIMUM MEAN-SQUARED ERROR A POSTERIORI ESTIMATION OF HIGH VARIANCE
VEHICULAR NOISE

Bowon Lee ∗

Hewlett-Packard Laboratories
1501 Page Mill Rd.

Palo Alto, CA 94304
bowon.lee@hp.com

Mark Hasegawa-Johnson

University of Illinois at Urbana-Champaign
Electrical and Computer Engineering

405 N. Mathews Ave,. Urbana, IL 61801
jhasegaw@uiuc.edu

ABSTRACT

In this paper, we describe a method of minimum mean-squared
error (MMSE) a posteriori estimation of high variance vehic-
ular noise. The proposed method considers spectral instances
of noise as sampled values from a stochastic noise process and
estimates them with given statistical properties of noise and
current noisy observation. Accuracy of the noise estimation
method is evaluated in terms of the accuracy of a spectrum-
based voice activity detection, in which speech presence is
determined by the a priori and a posteriori signal-to-noise
ratios (SNRs) in each frequency bin. VAD experiments are
performed on clean speech data by adding four different types
of vehicular noise, each with the SNR varying from−10 to 20
dB. Isolated digit recognition experiments are performed us-
ing original noisy recordings from the AVICAR corpus. Ex-
perimental results show that the proposed noise estimation
method outperforms both the MMSE a priori noise estima-
tion and autoregressive noise estimation methods especially
for low SNR.

1. INTRODUCTION

Speech processing systems such as speech coding and au-
tomatic speech recognition are typically designed for clean
speech signals as input. In many practical situations, speech
is corrupted by background noise. Noisy speech signals are
detrimental to speech processing systems, which require speech
enhancement algorithms so that speech processing systems
perform as they are designed. Speech enhancement algo-
rithms often depend on the existence of a robust voice ac-
tivity detector (VAD). Even without speech enhancement, a
good VAD can substantially improve the word error rate of
automatic speech recognition in noise (e.g., [1]). VAD can be
modeled as a log-likelihood test, evaluating the relative like-
lihoods of speech presence vs. absence [2], or as an explicit
computation of speech presence probability [3, 4]. Statistical
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VAD algorithms are mostly based on the signal-to-noise ratio
(SNR) [5, 6, 7], thus accurate estimation of the noise power
in each frame is critical.

Most systems depend on an MMSE estimate of the noise
power spectrum, i.e., an estimate of the expected value of the
noise power in each bin of the short time Fourier transform
(STFT). The expected noise power may be estimated from
the first several frames of a recording, if the first frames are
known to contain no speech. Alternatively, the noise power
may be recursively updated: Sohn and Sung [6] proposed an
autoregressive noise adaptation method with a variable adap-
tation coefficient that depends on an estimate of the speech
presence probability.

With higher noise power, the noise spectrum has higher
variance, and therefore, even though the noise is stationary,
the MMSE estimate of the noise spectrum may not be close
to the noise spectrum of the current observation. High noise
power also disrupts autoregressive noise adaptation methods,
because these methods depend on an estimate of speech pres-
ence probability: in low SNR recordings, estimated speech
presence probabilities are inaccurate. For these reasons, speech
enhancement and VAD algorithms that perform well with high
SNR may nevertheless fail in low SNR environments such as
an automobile.

This paper proposes an MMSE a posteriori estimation
of noise based on the MMSE a priori estimation of noise,
combined with a current noisy observation, employing speech
presence uncertainty. The proposed method treats spectral
instances of noise as independent and identically distributed
(IID) sampled values of a random variable; thus, unlike noise
adaptation methods, the proposed method does not assume
that noise spectral amplitude is predictable from its own re-
cent history. Experimental results show that the proposed
noise estimation achieves higher VAD accuracy in an auto-
motive environment compared to MMSE a priori noise esti-
mation and autoregressive noise adaptation methods.



2. BACKGROUND: VOICE ACTIVITY DETECTION

2.1. Statistical Noise Model

Consider an input signal x consisting only of stationary noise
n and assume that noise is a random process with an unknown
probability density function (pdf) with zero mean. Let the
short-time Fourier transform STFT of x be given by

Xm
k =

L−1∑
n=0

x[n + mL]e−j 2πkn
N (1)

If we consider that the STFT coefficients of x are a weighted
sum of samples of the corresponding random process, then
according to the central limit theorem, as L → ∞, the STFT
coefficients Xm

k asymptotically have Gaussian pdf with zero
mean [3]. Thus, the pdf of the kth frequency bin, Xm

k , can be
expressed as

p(Xm
k ) =

1
πλN (k)

exp
{
−|X

m
k |2

λN (k)

}
(2)

where λN (k) = E[|Xm
k |2] denotes the noise variance.

We can show that the power at the kth spectral component
|Xm

k |2 has an exponential pdf with mean λN (k). Thus, the
variance of DFT of noise λN (k) is equivalent to the MMSE
estimation of noise power.

Figure 1 depicts the histogram of squared STFT ampli-
tudes in one frequency bin. The signal being transformed is
white Gaussian noise. The dashed line is an exponential pdf;
the solid line is a normalized histogram of the squared ampli-
tude of the 100th frequency bin of a 400 point DFT of white
Gaussian noise.
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Fig. 1. Histogram of Spectrum versus an Exponential pdf

2.2. Voice Activity Detection

Assume now that the measurement x may contain speech, i.e.,
it may be the case that x = s + n. Voice Activity Detection

(VAD) compares the probabilities of two hypotheses:{
H0 : Xm

k = Nm
k , speech absent

H1 : Xm
k = Sm

k + Nm
k , speech present (3)

where Sm
k , Nm

k , and Xm
k are K-dimensional STFT vectors of

speech, noise, and noisy speech respectively. The pdf of Xm
k

given H0 is equivalent to Eq. (2) and the pdf given H1 is [3]

p(Xk|H1) =
1

π(λN (k) + λS(k))
exp

{
− |Xk|2

λN (k) + λS(k)

}
where λS(k) = E[|Sm

k |2] and λN (k) = E[|Nm
k |2] denote the

speech and noise variance respectively. The likelihood ratio
at the kth frequency bin is

Λk =
p(Xk|H1)
p(Xk|H0)

=
1

1 + ξk
exp

{
γkξk

1 + ξk

}
(4)

where ξk = λS(k)/λN (k) and γk = |Xm
k |2/λN (k) are de-

fined as a priori and a posteriori SNR respectively [3].

3. BACKGROUND: NOISE ESTIMATION

3.1. MMSE a priori Noise Estimation

In practice, we do not have an infinite length noise sequence.
The most common method of noise estimation given a finite
length noise sequence is periodogram estimation.

λ̂m
N (k) = |Xm

k |2 (5)

where Xm
k is the STFT of noise only signal x in the mth

frame as defined in Eq. (1).
λ̂m

N (k) is exponentially distributed, so its expectation is
also its standard deviation. We can use Bartlett’s procedure to
reduce the variance of λ̂m

N (k) by averaging M frames.

λ̄N (k) =
1
M

M−1∑
m=0

λ̂m
N (k) (6)

This method requires a length LM sequence of noise only
observations. λ̄N (k) is an unbiased and consistent estimator
of λN (k):

E
[
λ̄N (k)

]
= λN (k) (7)

E
[(

λ̄N (k)− λN (k)
)2

]
=

1
M

λN (k)2 (8)

However, Eqs. (7) and (8) do not imply that λ̄N (k) predicts
any particular instance of |Nm

k |2 with high accuracy: |Nm
k |2

is exponentially distributed, so its standard deviation equals
its mean.



3.2. MMSE a posteriori Noise Estimation

Considering the speech presence uncertainty, the MMSE es-
timate of the noise at the kth frequency bin in the mth frame
given current noisy observation is [2]

λ̂m
N (k) = E

[
|Nm

k |2
∣∣Xm

k

]
= E

[
|Nm

k |2
∣∣H0

]
p(H0

∣∣Xm
k )

+ E
[
|Nm

k |2
∣∣H1

]
p(H1

∣∣Xm
k )

(9)

Using Bayes’ rule:

p(H0

∣∣Xm
k ) =

p(Xm
k

∣∣H0)p(H0)
p(Xm

k

∣∣H0)p(H0) + p(Xm
k

∣∣H1)p(H1)

=
1

1 + εΛm
k

(10)

where ε = p(H1)/p(H0) and Λm
k = p(Xm

k |H1)/p(Xm
k |H0)

is the likelihood ratio of the mth frame as in (4). We can
derive p(H1|Xm

k ) similarly,

p(H1|Xm
k ) =

εΛm
k

1 + εΛm
k

(11)

If we let βm
k = p(H1

∣∣Xm
k ) = εΛm

k /(1 + εΛm
k ) and substi-

tute (10) and (11) into (9), then

λ̂m
N (k) = βm

k E
[
|Nm

k |2
∣∣H1

]
+(1−βm

k )E
[
|Nm

k |2
∣∣H0

]
(12)

3.3. Autoregressive Noise Adaptation

In (12), we need the estimates of noise spectrum of each hy-
pothesis, E

[
|Nm

k |2
∣∣H0

]
and E

[
|Nm

k |2
∣∣H1

]
. Sohn and Sung [6]

proposed that, under hypothesis H0, we can use the current
noisy observation, i.e.,

E
[
|Nm

k |2
∣∣H0

]
= |Xm

k |2 (13)

Under hypothesis H1, |Xm
k |2 contains speech as well as

noise, and is therefore not an accurate estimate of the noise
power. Assuming that the VAD probability βm

k has been cor-
rectly estimated in all previous frames, the best available es-
timate of the noise power is therefore

E
[
|Nm

k |2
∣∣H1

]
= λ̂m−1

N (k) (14)

Combining Eqs. (12) through (14) yields

λ̂m
N (k) = βm

k λ̂m−1
N (k) + (1− βm

k )|Xm
k |2 (15)

Sohn and Sung [6] proposed that, if βm
k is an accurate es-

timate of the speech presence probability in each frame, then
Eq. (15) is an equally accurate estimate of the noise power
in the mth frame. Under these circumstances, λ̂m

N (k) takes
into account all information about the underlying noise pro-
cess that can be extracted from frames up to and including the
current frame.

4. PROPOSED NOISE ESTIMATION METHOD

The autoregressive noise estimator λ̂m
N (k) proposed in Eq. (15)

is optimal, if and only if the speech presence probability es-
timate βm

k is accurate. Unfortunately, in a low SNR environ-
ment, βm

k is itself a random variable with high variance. βm
k

is a sigmoid transformation of the random variable |Xm
k |2:

βm
k =

e|X
m
k |

2/(akλN (k))

(ak/ε) + e|X
m
k |2/(akλN (k))

(16)

where ak = (1 + ξk)/ξk.
The input threshold of the sigmoid—the value of |Xm

k |2 at
which βm

k = 0.5—is given by θk = akλN (k) log
(

ak

ε

)
. Any

noise-only frame in which |Nm
k |2 > θk will cause a “false

positive:” βm
k ≈ 1 despite the absence of speech. Eq. (15)

prohibits these false positives from contributing to the au-
toregressive estimate λ̂m

N (k), therefore, over time, the esti-
mate λ̂m

N (k) tends to under-estimate the true expected value
E[|Nm

k |2], and to over-estimate the probability of speech pres-
ence in any given frame.

In order to more precisely estimate the amount by which
autoregressive noise adaptation under-estimates λN (k) in low-
SNR environments, let us treat βm

k as a binary random variable—
a unit step function of |Nm

k |2, rather than a sigmoid function.
Define ρ = P (βm

k ≥ 0.5); under the assumption, E [βm
k ] =

ρ. By integrating the pdf of |Nm
k |2, we find that

ρ =
∫ ∞

ak log(ak/ε)

e−tdt =
(ak

ε

)−ak

(17)

In terms of ρ, the expected value of λ̂m
N (k) is approximately

E
[
λ̂m

N (k)
]
≈ ρE

[
λ̂m−1

N (k)
]
+(1− ρ) E

[
|Xm

k |2
∣∣ βm

k < 0.5
]

However,

(1− ρ) E
[
|Xm

k |2
∣∣ βm

k < 0.5
]

= λN (k)
∫ ak log(ak/ε)

0

te−tdt

= λN (k) [1− ρ + ρ log ρ]

(18)

Combining equations, we find that

E
[
λ̂m

N (k)
]
≈ ρλ̂m−1

N (k) + λN (k) [1− ρ + ρ log ρ] (19)

If we begin with a perfect estimate λ̂1
N (k) = λN (k), then

Eq. (19) demonstrates that λ̂m
N (k) will tend to decay over

time, with an initial slope of ρ log ρλN (k) < 0. The scaling
factor ρ log ρ is most negative at values of ρ = e−1; for ex-
ample, if ε = 1, then the smallest value of ρ log ρ (and there-
fore, according to the estimate in Eq. (19), the worst under-
estimation of λN (k) by the autoregressive estimator) occurs
at an SNR of ξk = 1.3, quite close to 0 dB SNR.



Table 1. Four noise conditions from the AVICAR database

Condition Description
35U Car running at 35 mph with windows closed
35D Car running at 35 mph with windows open
55U Car running at 55 mph with windows closed
55D Car running at 55 mph with windows open

In high-noise environments, therefore, error propagation
using Eq. (15) is an important problem. Error propagation can
be avoided by applying a certain amount of prior knowledge
to the problem. For example, if the noise process is known
to be stationary, and if the first M frames of the signal are
known to contain no speech, then an a priori periodogram
estimate λ̄N (k) of E[|Nm

k |2] with known standard error may
be computed using Eq. (6). If we assume that intervening
frames provide no further information about E[|Nm

k |2], then

E
[
|Nm

k |2
∣∣H1

]
= λ̄N (k) (20)

and Eq. (12) becomes

λ̂m
N (k) = βm

k λ̄N (k) + (1− βm
k )|Xm

k |2 (21)

If it is highly likely that the speech is present, i.e., Λm
k � 1,

thus βm
k ≈ 1, then Eq. (21) sets λ̂m

N (k) equal to the mean
estimate of the noise spectrum. Thus the method proposed
in Eq. (21) is subject to false-positive errors, just like the au-
toregressive estimator, but Eq. (21) does not propagate error.
Instead, a false-positive frame is treated just like any other
frame about which we have no certain knowledge of the noise
spectrum: the noise estimate is backed off to the a priori noise
estimator λ̄N (k).

The proposed noise spectrum estimation method can be
interpreted as an a posteriori MMSE estimate of the noise
power in the current frame, when the noise process is station-
ary but with high variance. Experimental results show that
the proposed noise estimation method provides higher accu-
racy especially for low SNR cases.

5. EXPERIMENTS

Evaluation included two experimental tests. First, noise and
speech were electronically mixed, and the noise estimation
methods in Eqs. (6), (15), and (21) were tested in the task of
voice activity detection (VAD). Second, original noisy speech
data were endpointed using each of the three VADs, and word
error rates (WER) were computed using mixture Gaussian
HMMs.

VAD tests used 62 sentences from the TIMIT database [8].
One second of silence was inserted between adjacent sen-
tences, making a total duration of 212 seconds, of which 54%
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Fig. 2. ROC curve for 5 dB SNR with 55U noise condition,
FN: Fixed noise, NA: Autoregressive Noise adaptation, NE:
Proposed noise estimation

seconds contain speech. Frame duration chosen for experi-
ments is 10 ms and each frame is marked as either speech or
silence according to the transcription by marking frames with
speech in more than 50% of their duration to be speech, and
silence otherwise. We added four different car noises out of
five from the AVICAR database [9] by increasing SNR’s from
−10 dB to 20 dB with 5 dB increments for each noise con-
dition. AVICAR (http://www.ifp.uiuc.edu/speech/AVICAR/)
is a database of multi-camera, multi-microphone audiovisual
speech acquired from 100 talkers in moving cars. The best
audio-only isolated digit word error rate (WER) achieved on
this corpus, averaged across all noise conditions, is 3.95%, us-
ing a missing-features approach called the phoneme restora-
tion HMM [1]. The best video-only isolated digit WER on
this corpus is 62.5% [10]. Audiovisual error rates have not
improved upon audio-only rates for this corpus.

Description of the noise conditions extracted from the database
are listed in Table 1. We used the initial 20 frames (200 ms)
for the mean estimate of noise assuming that they contain only
noise.

Performance of VAD with different noise estimation meth-
ods are compared by correct speech detection and false alarm
probabilities (Pd and Pf ). Figure 2 depicts the receiver oper-
ation characteristics (ROC) for 5 dB SNR with noise condi-
tion 55U for three different noise estimation methods. “Fixed
noise” estimation (FN) refers to Eq. (6); “Noise adaptation”
(NA) refers to Eq. (15); “Noise estimation” (NE) refers to the
proposed backoff method, Eq. (21).

In order to quantitatively present the accuracies of differ-
ent noise estimation methods, we set the threshold η such that
Pf = 5% and compared Pd for each noise estimation method.
Summary of results across all noise conditions according to
the SNR’s is in Table 2. We can see from Table 2 that the soft-
decision based noise adaptation method performs worse than
the fixed noise spectrum when the SNR is lower than 0 dB,
which illustrates that with low SNR, the noise estimate in the
previous frames are significantly different from the current
noise spectrum, thus autoregressive adaptation makes VAD



Table 2. Summary of Pd’s of the VAD’s (Pf = 5%).
FN=”Fixed Noise” (Eq. 6), NA=”Noise Adaptation” (Eq. 15),
NE=proposed ”Noise Estimation” method (Eq. 21).

NE NA FN
SNR Pd (%) Pd (%) Pd (%)

-10 dB 35.89 25.76 28.64
-5 dB 55.41 45.65 47.31
0 dB 72.73 65.69 64.76
5 dB 84.11 81.12 77.88
10 dB 90.74 89.83 86.99
15 dB 93.47 92.90 91.91
20 dB 94.28 94.14 94.09

Overall 75.23 70.73 70.22

Table 3. WER in percent, HMM isolated digit recognizers,
noisy speech AVICAR recordings, five-fold cross-validation.
BF=beamformed audio, no VAD; NE=BF+noise estimation
VAD, NA=BF+noise adaptation VAD, FN=BF+fixed-noise
VAD

Noise Condition BF NE NA FN
IDL 3.41 2.84 2.84 3.13
35U 2.30 2.80 2.86 3.47
35D 2.40 3.64 3.75 4.34
55U 3.51 4.32 4.79 5.38
55D 6.02 7.00 8.41 9.21

Overall 3.49 4.07 4.47 5.04

perform worse. The VAD with the proposed noise estimation
method has higher accuracy compared to the other two noise
estimation methods especially for low SNR.

The three VADs described in Fig. 2 and Table 2 were
used to endpoint isolated digit utterances prior to automatic
speech recognition (ASR). In this experiment, all audio sig-
nals are original recordings from the AVICAR corpus, there-
fore “ground truth” for the VAD is unknown (there is no ground
truth specification of the beginning or ending of speech in
each file). ASR was conducted using mixture Gaussian hid-
den Markov models (HMMs). HMMs were trained on data
from 60 talkers (all noise conditions), the number of Gaus-
sians was increased until error rate reached a minimum on
data from 20 talkers, and then error rate was computed for the
remaining 20 talkers. Five-fold cross validation was used to
compute the word error rates (WER) in Table 3. WERs re-
ported for each noise condition each summarize 2000 tokens,
with a maximum WER of about 5%, therefore WER differ-
ences of 0.8% are significant at the p = 0.05 level; WERs re-
ported in the final row of each table summarize 10000 tokens,
therefore WER differences of 0.35% are significant. All audio
signals are the result of delay-and-sum beamforming using a
7-microphone horizontal array.

6. CONCLUSION

In this paper, we proposed a MMSE a posteriori noise esti-
mation method by considering the instantaneous noise spec-
trum as sampled values from an underlying noise process.
Experimental results show that the proposed noise estimation
method provides higher accuracy for VAD and for isolated
digit recognition than the fixed mean estimate or noise adap-
tation methods with high variance vehicular noise.
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