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ABSTRACT 
 
This paper presents an efficient decoder technique for use in large 
vocabulary connected words speech recognition on DSP platform, 
which is designed to operate in an intelligent vehicle system.  
Designing speech interface for a vehicular environment is 
challenging because the computing resource available to an 
embedded system is typically much limited than the general-purpose 
PC.  It is important to consider optimization techniques from 
computational algorithms to hardware structures where ASR engine 
is to be ported.  We introduce efficient implementation techniques 
for embedded platforms are presented - such as tied-mixture model, 
Gaussian selection, internal memory mapping in DSP L2 cache, 
static memory management, parameter table lookup, etc.- all for 
realizing a high-speed speech recognizer design suitable for DSP 
vehicular navigation system. 
 

1. INTRODUCTION 
 
Recently, speech recognition systems on embedded platforms have 
received a lot of attention. Particularly in the telematics devices 
wherein voice command navigation and voice activated email 
uploading/downloading functions can be deployed, speech interface 
capability is becoming attractive in the next generation automobiles.  
However, because the available resources in embedded systems are 
extremely limited and the computing power is significantly lower 
than general PC, speech recognition systems based on large 
vocabulary or continuous speech pose a challenge in 
implementation. To solve these problems, various optimization 
techniques for decoders have been investigated. Among the recently 
proposed ones, a tied-mixture HMM model has been proposed as a 
promising one [1][2].  This acoustic model has not only small size 
compatible with DSP system, but also high accuracy nearly like 
CHMM model. Hence our system uses tied-mixture model compact 
enough for embedded environment, so that it is anticipated to render 
memory efficiency and fast decoding. Moreover, we use the 
Gaussian selection method with pool evaluation to improve of 
recognition processing speed. 

It is important to consider the optimization techniques from 
computational algorithm to hardware structures where ASR engine 
is to be ported. DSP core has 2-level cache and uses 2nd level (L2) 
cache as internal memory. Cache memory’s speed is as fast as about 
90 times more than SDRAM. Thus it achieves good performance if 

it is loaded into the internal memory of repeated processes or much 
exhausted routine by computational loads. Moreover dynamic 
memory allocation and free processing causes additional hardware 
execution time in DSP. Hence, static memory allocation by stack 
data structure is used to handle the memory. We discuss other 
optimization techniques in algorithms used in fast decoder 
development. 

This paper is organized as follows. Section 2 briefly reviews 
the tied-mixture model for embedded system.  Section 3 describes 
the hardware platform using a general purpose DSP where the 
proposed decoding algorithm and optimization techniques are 
implemented.  In Section 4, representative experiments and their 
results are presented. Finally, conclusions are made in Section 5. 
 

2. PROPOSED ALGORITHMS 
 
2.1. Tied-mixture model 
 
2.1.1. Acoustic model for embedded system 
 
The acoustic model for a DSP system has two challenges.  First, it 
cannot accommodate as much memory as that of a conventional 
CHMM model. Second, degradation of recognition performance 
must be minimized in spite of the resource limitation. To solve these 
problems, a Semi-Continuous HMM (SCHMM) modeling 
technique was introduced and implemented through the tied-
mixture modeling method [1][2].  Also, a Context Dependent model 
(tri-phone) is employed to reflect maximum articulation effect by 
previous and next context.  We also employ the state tying 
technique of a decision tree based to solve the unseen context 
problems and prevent data insufficiency problems at tri-phone 
training [4].  As such, the employed acoustic model consists of 
about 14% of CHMM model size while the recognition 
performance decreases less than 1%. The output pdf of SCHMM is 
as follows: 
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where L is codebook size, bs(l) is weight by discrete probability 
value of index l in state output pdf and N(•) denotes Gaussian 
distribution. where L is codebook size, bs(l) is weight by discrete 
probability value of index l in state output pdf and N(•) denotes 
Gaussian distribution. 



 
2.1.2. Gaussians selection with pool evaluation 
 
In Viterbi decoding, most of the computing time is expended in 
output probability computation. Output probability computation can 
be divided into two parts – the “Mahalanobis distance” part (a 
Euclidian distance computation that consider variance) and the 
“Log-Add” part of each Gaussian mixture.  Particularly in the tied-
mixture model, the state pdf arithmetic process shares all Gaussians 
in the pool and adds all the weight of each mixture. Thus, the log-
add operation substantially occupies the most computation parts. To 
reduce the decoding time, it is important to select only a few 
representative Gaussians and employ them for log add computation. 
If a feature vector is input in the each frame, after the Mahalanobis 
distance calculation about all Gaussians in the pool, select these 
Gaussians in order of high scorers when sorted above the threshold 
value. Therefore, the computational load can be reduced using the 
selected Gaussians as they are used for “log-add” computation. The 
threshold value is obtained from experiments. The Gaussian 
selection expression based on tied-mixture is as follows: 
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where pi is i’th Gaussian likelihood. 
 
2.2. Fast decoder design 
 
It is important to consider the optimization techniques from a 
computational algorithm to hardware structures where an ASR 
engine is to be ported.  Hereafter we will discuss some techniques 
used in fast decoder development.  
 
2.2.1. Log-add look-up table 
 
As described in the previous section, log addition operation takes 
the most computing time in output probability calculation. 
Generally, since log-add operation is difficult to implement directly, 
it is modified as follows theory [6]; 

Hence, we implement the log-add operation with log and 
exponential function in development tool as follows; 
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where x and y are log domain parameters. 
However, if a log addition expression is given as in Eq (5), it 

requires 2 additions, 1 subtraction, and 1 log and exponential 
computation in each log addition processing. 

If we execute log(•) and exp(•) functions using the math 
library supported in an actual DSP compiler, the log(•) function 
takes 152cycles and the exp(•) function takes 229cycles in a 32bit 
float type's operation [7]. The log-add(•) operation consumes about 
100 times compared to the add operation of 4cycles in the 32bit 
float type. As before, it is impossible to implement a real-time 
decoder based on the TM model where log-add operation is 
performed frequently. Therefore, a log-table created in program 
initializing to approximate the log addition operation is used instead 
of using log(•) and exp(•) functions.  The error rate through 
approximation is acceptable and the computational load is replaced 
by one addition and subtraction, and multiplication and division just 
once in an actual operation. 
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2.2.2. Static memory allocation using stack 
 
In a Viterbi search, the structure named token that has each state's 
accumulated probability value gets created and disappears 
frequently [5]. Because the number of tokens changes frequently in 
search processing, it should be manageable dynamically and the 
structure is a profitably linked list data type. However, it causes 
additional hardware execution time in DSP during dynamic 
memory allocation and free processing. Thus, it is recommended to 
use static memory if possible. The stack data structure is designed to 
handle the token's memory. First, allocate the necessary token's 
whole number of memory space statically. When the token's 
creation is required in a Viterbi search, the index of already existing 
memory is passed to a new token. Because each activated token 
consists of a linked list data structure, it can be approached 
sequentially when the token is created or disappears. Also, a 
frequently required part of memory allocation is the token creation 
part in the entire recognition structure. Therefore, it can reduce the 
total recognition execution time by static memory assignment using 
stack. 
 
2.2.3. Internal memory in DSP L2 cache 
 
Cache memory acts as an intermediate bridge between SDRAM and 
CPU on DSP inside, and exists by L1 and L2 form. L1 memory is 
preserved, and L2 memory is programmable in that the developer 
can use it by data structure of the program code or cache, stack, 
heap etc… The size is smaller than SDRAM, but the speed is as fast 
as more than 90 times. Thus it gives good performance if it is 
loaded into the internal memory of repeated processes or a much 
exhausted routine by computational loads. To take account of the 
size given L2 memory, we load the functions such as pool 
evaluation, output pdf, memory free, etc. and data structure such as 
log-add table etc. into the internal memory. 
 
2.2.4. State pdf caching 
 
Most of the occupying computational load during the decoding 
process based on HMM is output pdf computation. In particular, 
because search space becomes huge for large vocabulary 
recognition, output pdf of many states is calculated for just one 
frame.  However, it is not necessary to compute the state pdf 
repeatedly about equal states whose operation is already performed. 
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Therefore, store the state likelihood whose output pdf is already 
calculated into the cache so that the cache value is used when the 
same state's calculation is repeated. For fast processing, the program 
defines the cache size as the total number of states, and declares the 
flag array as much as cache size. Then if output pdf computation of 
any state is performed, activate the cache index of flag array as the 
state's index and store the likelihood into the cache array located in 
the same index.  After this calculation, refer the relevant cache 
values to the state index.  
 
2.3. Connected word search network design 
 
Continuous speech recognition provides more convenience to 
device users than isolated word recognition. Because of the 
reduction in the number of responses required in dialogue process, 
users in continuous speech recognition are enabled to execute the 
various commands in only 1 step. Continuous speech recognition, 
however, needs more resources to perform decoding in huge search 
space and thus must deal with linguistic information. For the 
purpose to reduce the system resources and provide the convenience 
similar to that of continuous speech recognition, we implemented it 
with a connected word recognition system. This system is based on 
isolated word recognition platform, but the search space follows the 
connected search network. Performing the Viterbi algorithm, the 
token, which stores a partial accumulated probability and some 
information, saves its present word and traverses next word until it 
reaches to word end node [5]. When the utterance is finished, the 
maximum probable path is backtracked to obtain the recognized 
word sequence. In the case of navigation system, command menu is 
organized using level building structure like that of tree topology in 
general. Hence the user speaks just one sentence from top-down 
menu to command the order while user must speak every time in 
each level menu as in an isolated word recognition system.  
 

 
Fig. 2. Block diagram of connected word search network 

 
 

3. HARDWARE OVERVIEW 
 
The proposed decoder in this paper is developed to use in an 
embedded system to recognize main place-names of 1800 places in 
city with speech.  The core processor in embedded system used has 
150MHz (900MFLOPS) maximum frequency. Floating point 
computation is supported and the execution of 8 instructions is 
possible at the same time by pipeline using 8 arithmetic logic units. 

Delivering data through 32bit outside memory interface and outside 
SDRAM is 16MB, and FLASH Read Only Memory is 1MB. The 
ADC/DAC converter for speech input/output uses of 11KHz sample 
rate, quantization precision is 16bit.  

Cache memory of L1, L2 exists inside the DSP core, L1 is 
reserved by data and program memory of each 4Kbyte allocate. L2 
cache is 64Kbyte and can use data and programs freely.  The system 
performance is increased as the core program code and data are 
loaded into L2 internal memory. A block diagram of the total 
system is as follows. 

 

 
 

Fig. 3. Block diagram of DSP system 
 

4. EXPERIMENTS 
 
4.1. General setup 
 
Twenty six (26) dimensions and 2 streams MFCC which consist of 
12 MFCC’s, 12 delta MFCC’s, and 2 log Energy’s were used for 
feature vector.  For the test set, vocabulary selected is 1880 names 
of places in Seoul city.  The test DB consists of 4,680 utterances 
from 19 men and 20 women between 20~40 years old.  The speech 
DB sampling rate is 11 kHz with 16bit precision, and PCM encoded. 

A tied-mixture acoustic model was trained. The number of 
Gaussians in pool is 512 (256 in each stream), and 1,649 triphone 
states were obtained via decision tree state clustering from 3,686 
triphones. 

 
4.2. Tied Mixture Model vs. CHMM  

 
We compared the performance of the proposed tied-mixture model 
with a conventional CHMM acoustic model. The same Viterbi 
decoder, beam pruning value, and various parameters are used in 
tied-mixture model and CHMM. We compared the accuracy and 
size of models. Table 1 shows the result of the experiments. 

 
Model Accuracy (%) Size (Byte) 

CHMM 94.14 6,633,428 
TM-HMM 93.31    933,472 

Table 1. Comparison of performance between tied-mixture model 
and CHMM acoutic model 



In this result, tied-mixture model accuracy is slightly lower than 
CHMM.  However, we could obtain 7 times smaller size model 
without significant performance degradation. 

 
4.3. With log-add look-up table 

 
Table 2 shows total processing times when conventional log(•), 
exp(•) function and log additional tables are used.  Log look-up 
table and conventional log_add(•) functions are implemented using 
equations derived in Section 2.2.1. A huge amount of processing 
time reduction is obtained. The total processing time of 
conventional log_add(•) function is 16.7 times more than the log-
table version. Although the DSP supports float arithmetic, log(•) or 
exp(•) functions consume enormous computational time.  Thus, it is 
important not to use logarithm or exponential functions if possible 
and instead convert with lookup tables. 
 

Decoding Conventional  
Log-add function Log look-up table 

Processing 
time(μsec) 16,810,377 1,805,876 

Table 2. Comparison of performance using log-table and 
conventional log-add function  

 
4.4. With static memory allocation using stack 

 
Table 3 shows a comparison of total processing times of using 
dynamic memory allocation and static memory allocation. Static 
memory allocation uses stack data type and it consumes shorter 
processing time than dynamic memory allocation by about 0.86 
times.  
 

Decoding Dynamic memory 
allocation 

Static memory 
allocation 

Processing 
time (μsec) 2,099,855 1,805,876 

Table 3. Comparison of performance using dynamic memory 
allocation and static memory allocation 

 
4.5. Connected word recognition  

 
We computed the connected word performance of 902 Seoul 

city address book consisting of 2 words (section & village names) 
task. Word network consists of 2-level building structure like that of 
tree topology. Test used 4,665 of continuous sentence DB that 39 
speakers each pronounced 120 sentences. In each sentence, 1st 
address and 2nd address of Seoul city address unit mixed is also 
included. Thus the total collected test number is 9,206 words. 
Recognition experiment result with word and sentence recognition 
rate is as follows.  
 

 Correct 
(%) 

Correct  
# of 

Deletion 
error

Substitution 
error 

Insertion 
error 

# of
Utter.

Sentence 93.09 4,326  321  4,647

Word 96.37 8,837 1 332 0 9,170
Table 4  Connected word recognition results 

 
Table 4 shows high accuracy rate in sentence task on embedded 

platform. Total processing time is same with above results. 

 
5. CONCLUSIONS 

 
In this paper, we described various design techniques for fast 
decoding with 1,880 isolated words and 902 connected words 
recognition task on automobile navigation system. To reduce the 
memory space, the tied-mixture model was considered. In addition, 
some resource optimizing techniques for DSP architecture, such as 
using a log table, internal memory, pdf cache, and memory 
management are proposed.  Moreover, connected word search 
network is applied on embedded system for users making utterances 
more convenient. The experimental results show that the tied-
mixture model reduces the memory size by about 7 times than the 
conventional CHMM without significant performance degradation. 
Other optimizing methods for embedded platform improved the 
overall processing speed substantially. 
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