
DECODER OPTIMIZATION OF LARGE VOCABULARY
CONNECTED WORDS SPEECH RECOGNITION SYSTEM ON DSP

Seokyeong Jeong1, Taeyoon Kim2, Oh-il Kwon3 and Hanseok Ko1

1 Department of Visual Information Processing, Korea University, Seoul, Korea

2 School of Electronics Engineering, Korea University, Seoul, Korea
3 R&D Center, Hyundai Autonet Co., Icheon, Korea

Email: {syjeong,tykim}@ispl.korea.ac.kr, koi@haco.co.kr, hsko@korea.ac.kr

ABSTRACT

This paper presents an efficient decoder technique for use in large
vocabulary connected words speech recognition on DSP platform,
which is designed to operate in an intelligent vehicle system.
Designing speech interface for a vehicular environment is
challenging because the computing resource available to an
embedded system is typically much limited than the general-purpose
PC. It is important to consider optimization techniques from
computational algorithms to hardware structures where ASR engine
is to be ported. We introduce efficient implementation techniques
for embedded platforms are presented - such as tied-mixture model,
Gaussian selection, internal memory mapping in DSP L2 cache,
static memory management, parameter table lookup, etc.- all for
realizing a high-speed speech recognizer design suitable for DSP
vehicular navigation system.

1. INTRODUCTION

Recently, speech recognition systems on embedded platforms have
received a lot of attention. Particularly in the telematics devices
wherein voice command navigation and voice activated email
uploading/downloading functions can be deployed, speech interface
capability is becoming attractive in the next generation automobiles.
However, because the available resources in embedded systems are
extremely limited and the computing power is significantly lower
than general PC, speech recognition systems based on large
vocabulary or continuous speech pose a challenge in
implementation. To solve these problems, various optimization
techniques for decoders have been investigated. Among the recently
proposed ones, a tied-mixture HMM model has been proposed as a
promising one [1][2]. This acoustic model has not only small size
compatible with DSP system, but also high accuracy nearly like
CHMM model. Hence our system uses tied-mixture model compact
enough for embedded environment, so that it is anticipated to render
memory efficiency and fast decoding. Moreover, we use the
Gaussian selection method with pool evaluation to improve of
recognition processing speed.

It is important to consider the optimization techniques from
computational algorithm to hardware structures where ASR engine
is to be ported. DSP core has 2-level cache and uses 2nd level (L2)
cache as internal memory. Cache memory’s speed is as fast as about
90 times more than SDRAM. Thus it achieves good performance if

it is loaded into the internal memory of repeated processes or much
exhausted routine by computational loads. Moreover dynamic
memory allocation and free processing causes additional hardware
execution time in DSP. Hence, static memory allocation by stack
data structure is used to handle the memory. We discuss other
optimization techniques in algorithms used in fast decoder
development.

This paper is organized as follows. Section 2 briefly reviews
the tied-mixture model for embedded system. Section 3 describes
the hardware platform using a general purpose DSP where the
proposed decoding algorithm and optimization techniques are
implemented. In Section 4, representative experiments and their
results are presented. Finally, conclusions are made in Section 5.

2. PROPOSED ALGORITHMS

2.1. Tied-mixture model

2.1.1. Acoustic model for embedded system

The acoustic model for a DSP system has two challenges. First, it
cannot accommodate as much memory as that of a conventional
CHMM model. Second, degradation of recognition performance
must be minimized in spite of the resource limitation. To solve these
problems, a Semi-Continuous HMM (SCHMM) modeling
technique was introduced and implemented through the tied-
mixture modeling method [1][2]. Also, a Context Dependent model
(tri-phone) is employed to reflect maximum articulation effect by
previous and next context. We also employ the state tying
technique of a decision tree based to solve the unseen context
problems and prevent data insufficiency problems at tri-phone
training [4]. As such, the employed acoustic model consists of
about 14% of CHMM model size while the recognition
performance decreases less than 1%. The output pdf of SCHMM is
as follows:

∑
=

Σ=
L

l
lltsts xNibxb

1
),;()()(

rrrr μ (1)

where L is codebook size, bs(l) is weight by discrete probability
value of index l in state output pdf and N(•) denotes Gaussian
distribution. where L is codebook size, bs(l) is weight by discrete
probability value of index l in state output pdf and N(•) denotes
Gaussian distribution.

2.1.2. Gaussians selection with pool evaluation

In Viterbi decoding, most of the computing time is expended in
output probability computation. Output probability computation can
be divided into two parts – the “Mahalanobis distance” part (a
Euclidian distance computation that consider variance) and the
“Log-Add” part of each Gaussian mixture. Particularly in the tied-
mixture model, the state pdf arithmetic process shares all Gaussians
in the pool and adds all the weight of each mixture. Thus, the log-
add operation substantially occupies the most computation parts. To
reduce the decoding time, it is important to select only a few
representative Gaussians and employ them for log add computation.
If a feature vector is input in the each frame, after the Mahalanobis
distance calculation about all Gaussians in the pool, select these
Gaussians in order of high scorers when sorted above the threshold
value. Therefore, the computational load can be reduced using the
selected Gaussians as they are used for “log-add” computation. The
threshold value is obtained from experiments. The Gaussian
selection expression based on tied-mixture is as follows:

),;()(

,)(

iitsi

threshp
its

xNibp

pxb
i

Σ=

= ∑
>

rrr

r

μ

(2)

where pi is i’th Gaussian likelihood.

2.2. Fast decoder design

It is important to consider the optimization techniques from a
computational algorithm to hardware structures where an ASR
engine is to be ported. Hereafter we will discuss some techniques
used in fast decoder development.

2.2.1. Log-add look-up table

As described in the previous section, log addition operation takes
the most computing time in output probability calculation.
Generally, since log-add operation is difficult to implement directly,
it is modified as follows theory [6];

Hence, we implement the log-add operation with log and
exponential function in development tool as follows;

|)|exp1log(),(addlog_ yxxyx −++= (4)

where x and y are log domain parameters.
However, if a log addition expression is given as in Eq (5), it

requires 2 additions, 1 subtraction, and 1 log and exponential
computation in each log addition processing.

If we execute log(•) and exp(•) functions using the math
library supported in an actual DSP compiler, the log(•) function
takes 152cycles and the exp(•) function takes 229cycles in a 32bit
float type's operation [7]. The log-add(•) operation consumes about
100 times compared to the add operation of 4cycles in the 32bit
float type. As before, it is impossible to implement a real-time
decoder based on the TM model where log-add operation is
performed frequently. Therefore, a log-table created in program
initializing to approximate the log addition operation is used instead
of using log(•) and exp(•) functions. The error rate through
approximation is acceptable and the computational load is replaced
by one addition and subtraction, and multiplication and division just
once in an actual operation.

)]5/256*(|[|tabellog_),(addTlog_
)256,256/5(,))*exp(1log(][tablelog_

−−+=
<−=+=

yxxyx
istepstepii

(5)

2.2.2. Static memory allocation using stack

In a Viterbi search, the structure named token that has each state's
accumulated probability value gets created and disappears
frequently [5]. Because the number of tokens changes frequently in
search processing, it should be manageable dynamically and the
structure is a profitably linked list data type. However, it causes
additional hardware execution time in DSP during dynamic
memory allocation and free processing. Thus, it is recommended to
use static memory if possible. The stack data structure is designed to
handle the token's memory. First, allocate the necessary token's
whole number of memory space statically. When the token's
creation is required in a Viterbi search, the index of already existing
memory is passed to a new token. Because each activated token
consists of a linked list data structure, it can be approached
sequentially when the token is created or disappears. Also, a
frequently required part of memory allocation is the token creation
part in the entire recognition structure. Therefore, it can reduce the
total recognition execution time by static memory assignment using
stack.

2.2.3. Internal memory in DSP L2 cache

Cache memory acts as an intermediate bridge between SDRAM and
CPU on DSP inside, and exists by L1 and L2 form. L1 memory is
preserved, and L2 memory is programmable in that the developer
can use it by data structure of the program code or cache, stack,
heap etc… The size is smaller than SDRAM, but the speed is as fast
as more than 90 times. Thus it gives good performance if it is
loaded into the internal memory of repeated processes or a much
exhausted routine by computational loads. To take account of the
size given L2 memory, we load the functions such as pool
evaluation, output pdf, memory free, etc. and data structure such as
log-add table etc. into the internal memory.

2.2.4. State pdf caching

Most of the occupying computational load during the decoding
process based on HMM is output pdf computation. In particular,
because search space becomes huge for large vocabulary
recognition, output pdf of many states is calculated for just one
frame. However, it is not necessary to compute the state pdf
repeatedly about equal states whose operation is already performed.

()())ln()ln(1ln)ln()ln(

1ln)ln()ln(

1ln)ln(

1

ABeABA
A
BABA

A
BABA

A
BABA

−++=+

⎟
⎠
⎞

⎜
⎝
⎛ ++=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=+

⎟
⎠
⎞

⎜
⎝
⎛ +=+

(3)

Therefore, store the state likelihood whose output pdf is already
calculated into the cache so that the cache value is used when the
same state's calculation is repeated. For fast processing, the program
defines the cache size as the total number of states, and declares the
flag array as much as cache size. Then if output pdf computation of
any state is performed, activate the cache index of flag array as the
state's index and store the likelihood into the cache array located in
the same index. After this calculation, refer the relevant cache
values to the state index.

2.3. Connected word search network design

Continuous speech recognition provides more convenience to
device users than isolated word recognition. Because of the
reduction in the number of responses required in dialogue process,
users in continuous speech recognition are enabled to execute the
various commands in only 1 step. Continuous speech recognition,
however, needs more resources to perform decoding in huge search
space and thus must deal with linguistic information. For the
purpose to reduce the system resources and provide the convenience
similar to that of continuous speech recognition, we implemented it
with a connected word recognition system. This system is based on
isolated word recognition platform, but the search space follows the
connected search network. Performing the Viterbi algorithm, the
token, which stores a partial accumulated probability and some
information, saves its present word and traverses next word until it
reaches to word end node [5]. When the utterance is finished, the
maximum probable path is backtracked to obtain the recognized
word sequence. In the case of navigation system, command menu is
organized using level building structure like that of tree topology in
general. Hence the user speaks just one sentence from top-down
menu to command the order while user must speak every time in
each level menu as in an isolated word recognition system.

Fig. 2. Block diagram of connected word search network

3. HARDWARE OVERVIEW

The proposed decoder in this paper is developed to use in an
embedded system to recognize main place-names of 1800 places in
city with speech. The core processor in embedded system used has
150MHz (900MFLOPS) maximum frequency. Floating point
computation is supported and the execution of 8 instructions is
possible at the same time by pipeline using 8 arithmetic logic units.

Delivering data through 32bit outside memory interface and outside
SDRAM is 16MB, and FLASH Read Only Memory is 1MB. The
ADC/DAC converter for speech input/output uses of 11KHz sample
rate, quantization precision is 16bit.

Cache memory of L1, L2 exists inside the DSP core, L1 is
reserved by data and program memory of each 4Kbyte allocate. L2
cache is 64Kbyte and can use data and programs freely. The system
performance is increased as the core program code and data are
loaded into L2 internal memory. A block diagram of the total
system is as follows.

Fig. 3. Block diagram of DSP system

4. EXPERIMENTS

4.1. General setup

Twenty six (26) dimensions and 2 streams MFCC which consist of
12 MFCC’s, 12 delta MFCC’s, and 2 log Energy’s were used for
feature vector. For the test set, vocabulary selected is 1880 names
of places in Seoul city. The test DB consists of 4,680 utterances
from 19 men and 20 women between 20~40 years old. The speech
DB sampling rate is 11 kHz with 16bit precision, and PCM encoded.

A tied-mixture acoustic model was trained. The number of
Gaussians in pool is 512 (256 in each stream), and 1,649 triphone
states were obtained via decision tree state clustering from 3,686
triphones.

4.2. Tied Mixture Model vs. CHMM

We compared the performance of the proposed tied-mixture model
with a conventional CHMM acoustic model. The same Viterbi
decoder, beam pruning value, and various parameters are used in
tied-mixture model and CHMM. We compared the accuracy and
size of models. Table 1 shows the result of the experiments.

Model Accuracy (%) Size (Byte)

CHMM 94.14 6,633,428
TM-HMM 93.31 933,472

Table 1. Comparison of performance between tied-mixture model
and CHMM acoutic model

In this result, tied-mixture model accuracy is slightly lower than
CHMM. However, we could obtain 7 times smaller size model
without significant performance degradation.

4.3. With log-add look-up table

Table 2 shows total processing times when conventional log(•),
exp(•) function and log additional tables are used. Log look-up
table and conventional log_add(•) functions are implemented using
equations derived in Section 2.2.1. A huge amount of processing
time reduction is obtained. The total processing time of
conventional log_add(•) function is 16.7 times more than the log-
table version. Although the DSP supports float arithmetic, log(•) or
exp(•) functions consume enormous computational time. Thus, it is
important not to use logarithm or exponential functions if possible
and instead convert with lookup tables.

Decoding Conventional
Log-add function Log look-up table

Processing
time(μsec) 16,810,377 1,805,876

Table 2. Comparison of performance using log-table and
conventional log-add function

4.4. With static memory allocation using stack

Table 3 shows a comparison of total processing times of using
dynamic memory allocation and static memory allocation. Static
memory allocation uses stack data type and it consumes shorter
processing time than dynamic memory allocation by about 0.86
times.

Decoding Dynamic memory
allocation

Static memory
allocation

Processing
time (μsec) 2,099,855 1,805,876

Table 3. Comparison of performance using dynamic memory
allocation and static memory allocation

4.5. Connected word recognition

We computed the connected word performance of 902 Seoul

city address book consisting of 2 words (section & village names)
task. Word network consists of 2-level building structure like that of
tree topology. Test used 4,665 of continuous sentence DB that 39
speakers each pronounced 120 sentences. In each sentence, 1st
address and 2nd address of Seoul city address unit mixed is also
included. Thus the total collected test number is 9,206 words.
Recognition experiment result with word and sentence recognition
rate is as follows.

 Correct
(%)

Correct
of

Deletion
error

Substitution
error

Insertion
error

of
Utter.

Sentence 93.09 4,326 321 4,647

Word 96.37 8,837 1 332 0 9,170
Table 4 Connected word recognition results

Table 4 shows high accuracy rate in sentence task on embedded

platform. Total processing time is same with above results.

5. CONCLUSIONS

In this paper, we described various design techniques for fast
decoding with 1,880 isolated words and 902 connected words
recognition task on automobile navigation system. To reduce the
memory space, the tied-mixture model was considered. In addition,
some resource optimizing techniques for DSP architecture, such as
using a log table, internal memory, pdf cache, and memory
management are proposed. Moreover, connected word search
network is applied on embedded system for users making utterances
more convenient. The experimental results show that the tied-
mixture model reduces the memory size by about 7 times than the
conventional CHMM without significant performance degradation.
Other optimizing methods for embedded platform improved the
overall processing speed substantially.

7. REFERENCES

[1] J.R. Bellegarda, D. Nahamoo, “Tied mixture continuous
parameter modeling for speech recognition”, IEEE
Transactions on SAP, Vol. 38, Issue: 12, Dec. 1990, pp. 2033
– 2045

[2] Junho Park and HANSEOK KO, “Achieving a Reliable Compact
Acoustic Model for Embedded Speech Recognition System with
High Confusion Frequency Model Handling”, Speech
Communication, Vol.48, Issue 6, pp 737-745, June, 2006.

[3] Gales, M., Knill, K., Young, S., 1999. “State-based Gaussian
selection in large vocabulary continuous speech recognition using
HMM’s”. IEEE Trans. Speech Audio Process. 7 (March), 152–161.

[4] S. J. Young, J. J. Odell, and P. Woodland, “Tree-based
state-tying for high accuracy acoustic modeling,” in Proc.
ARPA Workshop Human Language Technol., 1994, pp.
286-291.

[5] S.J. Young, N.H. Russel, J.H. Thornton, “Token passing: a
simple conceptual model for connected speech recognition
systems” Technical Report F_INFENG/TR38, Cambridge
University Engineering Department. 1989.

[6] SJ Melnikoff, SF Quigley “Implementing the Log-Add
Algorithm in Hardware”, Electronic Letters, 39, 12, 2003,
939-941.

[7] TMS320C67x FastRTS Library Programmer’s Reference
(SPRU100A), Texas Instruments, October 2002. [Online].
Available: http://focus.ti.com/lit/ug/spru100a/spru100a.pdf

