
A SCALABLE SYSTEM FOR EMBEDDED LARGE VOCABULARY CONTINUOUS
SPEECH RECOGNITION

G. Linarès, D. Massonié, P. Nocéra, C.Lévy

Laboratoire Informatique d’Avignon (LIA)

University of Avignon, France
georges.linares,dominique.massonie,christophe.levy,pascal.nocera@univ-avignon.fr

ABSTRACT

This paper presents a system for large vocabulary
continuous speech recognition in condition of constrained
hardware resources. We investigate efficient pruning and
caching strategy aiming to handle extensive acoustic and
linguistic modeling. Software components are analyzed in
terms of resource consuming. Then, we evaluate the
system performance in extreme configuration where
acoustic and linguistic models are dramatically pruned.
Results show that the system design we proposed allows
to use large HMM-based acoustic models and trigram
language models while performing very fast decoding,
about 0.6 real-time on a standard desktop computer while
remaining the transcript relevance.

1. INTRODUCTION

Embedded Large Vocabulary Continuous Speech
Recognition (LVCSR) is one of the most promising
application of speech processing. The last decade, the
speech technology was largely integrated in mobile
systems as hardware performance was strongly improved.
Nevertheless, light recognition systems offer usually
restricted speech-based services, such as name dialing or
voice command. Moreover, the embedding of LVCSR
engine implies a specific design in which the models
precision are degraded and the search algorithm is strictly
pruned, in comparison to the ones involved in
unconstrained systems. The fast improvement of hardware
capacities may lead soon to an integration of more
powerful Automatic Speech Recognition (ASR) system
into light and mobile devices. Nevertheless, recent
proposals of embedded systems require still some
software adaptation and rigorous pruning of models
involved in recognition process.

In this paper, we investigate methods for reducing the
resource required for LVCSR while preserving the
functional model of the transcription machine. We focus

on acoustic and linguistic resource management which
allows to handle both large acoustic and linguistic models.

The next section of this paper present the LIA LVCSR
system. We describe firstly the search algorithm. Then,
we focus on acoustic and linguistic handling. A fast
acoustic manager is described and we propose an efficient
caching technique for fast access to trigram probabilities.

The third section presents the evaluation we achieved
on large vocabulary tasks. Experiments are carried out in
the framework of the ESTER [3] evaluation campaign.

Lastly, we conclude and suggest some key-points to
better improve the tradeoff between accuracy and resource
consumption in LVCSR systems.

2. SPEERAL DECODER

2.1. Search Strategy

The search engine of Speeral toolkit is an A*-based
decoder. A* is an algorithm dedicated to the search of the
best path in a graph. It has been used in several speech
recognition engines, generally for word-graph decoding.
In Speeral, the search algorithm operates on a phoneme
lattice, which are estimated by using cross-word and
context-dependent HMM.
The exploration of the graph is supervised by an estimate
function F(hn) which evaluates the probability of the
hypothesis crossing the node n:

F(hn) = g(hn) + p((hn)

where g(hn) is the probability of the current hypothesis
which results from the partial exploration of the search
graph (from the starting point to the current node n); p(hn)
is the probe which estimates the probability of the best
hypothesis from the current node n to the ending node.
The stack of hypotheses is ordered on each node
according to F(). The best paths are then explored firstly.
This depth first search refines the evaluation of the current
best hypothesis and low-probability paths are cut-off,

leading to search backtrack. It is clear that precision of the
probe function is a key point for search efficiency. We
have produced substantial efforts to improve the probe by
integrating, as soon as possible, all available information.

The Speeral look-ahead strategy is described in the
next section.

2.1. Acoustic-linguistic look-ahead

As explained previously, the probe function aims to
evaluate the probability of each path which may be
developed. The more this approximation is close to the
exact one, the sooner a decision of leaving or developing
a path is taken. Moreover, the CPU-cost of this function is
critical as it is used at each node of the search graph. We
use a long-term acoustic probe combined with a short-
term linguistic look-ahead. The acoustic term is computed
by a Viterbi-back algorithm based on context-free
acoustic models. This algorithm evaluates the best
acoustic probabilities from the end-point to the current
one. Of course, the evaluation of all partial paths are
performed once, in a first pass. Nevertheless, for search
consistency, the probe must always provide an upper limit
of path probabilities. So, the best phoneme sequences are
rescored by using upper-models. Upper models are
context-free models resulting from the aggregation in a
large HMM, of all the context-dependent states which
were associated to a context-free model, remaining left-
right transition constraints. Hence, the probability of
emission given the upper-model is an upper-limit of path
probabilities.

Anticipating the linguistic information (known as
LMLA - Language Model Look-Ahead) enables the
comparison of competing hypotheses before reaching a
word boundary. The probability of a partial word
corresponds to the best probability in the list of words
sharing the same prefix:

() ()hWiPhWP

i
max* =

where W* is the best possible continuation word and h

the word history (partially present in g(hn)). The lexicon
is stored as a PPT (Pronunciation Prefix Tree), see figure
1. Each tree node contains the list of reachable words. To
ensure the consistency between linguistically well formed
hypotheses and pending ones, linguistic probabilities have
to be computed at the same n-gram order. This means
doing LMLA also at the 3-gram level. We developed a
fast computation and approximation method based on a
divide and conquer strategy ([6]). Our approach consists
in first comparing the list W*with the list of available
trained 3-gram stored in the LM. The LM is an on-disk
tree structure containing lists of word probabilities at each
n-gram level. Comparing lists at runtime spares most of

the LM back-off computation with low overhead (lists
size are shown on table 1). The LMLA approximation
does not affect the results. Moreover we introduced pre-
computed LMLA probabilities to speed-up the
computation of the biggest lists.

2.3. Lexicon structure and compression

The lexicon is stored as a Pronunciation Prefix Tree

(PPT) for search efficiency [1]. Each node s (as a state
reached during the decoding process) knows the wordlist
of reachable words W (s) (see figure 1). The wordlist size
decreases along the PPT to reach one single word at
leaves. No other information like sub-tree dominance [7]
is used. Due to pronunciation variation or tree scarcity,
different nodes can share the same wordlist. As shown on
table 2 most nodes are leaves. On average each wordlist
tend to be shared by 3 internal nodes. Other properties of
the lexical tree compression are also discussed in [8].

When the node is a leaf or due to PPT compression
(figure 1) W (s) can contain one single word. The LMLA
computation is then the same as a simple n-gram access,
thus LMLA prefetches n-gram probabilities into the n-
gram cache.

 Depth d

3

d+1 ...

2

Word 1

Word 2

Word 3

Fig. 1. A sample end of Pronunciation Prefix Tree. Each
node s contains the wordlist W (s) of reachable words.
PPT compression is possible, for example the wordlists of
word3 last two nodes are identical. Moreover if word1
and word2 are two different pronunciation of the same
word, then more wordlists could be reduced and shared
earlier in the tree, from depth d + 1.

Table 1: count of wordlist according to size. Most
wordlists are smaller or equal to 5 words

size all >5 >45 >98 >1000 >1500
27k 191k 7k 402 - 15 9
65k 403k 16k - 402 34 23

Table 2 : count of nodes and wordlists. The compression
ratio of wordlists to (total # of nodes - leaves) / # of
unique wordlist, which is about 3.

nodes & wordlist lexicon
27k

lexicon
65k

Total # nodes 191k 403k
Nodes without list (leave) 140k 278k
of unique lists 18k 43k
of duplicate lists 10396 26415
More than duplicate lists 5752 14837

2.4. Acoustic Handler

5.1.1. Motivation

The a priori estimation of the contribution of each
component in the decoding duration is difficult, as it
depends on the search strategy and on the models
complexity. Nevertheless, considering the com- plexity of
acoustic models involved in LVCSR systems, the compu-
tation of acoustic probabilities may take a large part of the
decoding computational cost. [4] estimates this ratio
ranges between 30% and 70% in a large vocabulary
system. More recent systems use models of millions of
parameters; such complexity should not be tractable
without any fast calculation method. We produced
substantial ef- forts in optimizing the acoustic
management, by using an efficient caching scheme and an
original method for fast-likelihood computation. A*
decoding and state tying lead to an asynchronous use of
acoustic probabilities, at HMM, GMM and Gaussian
levels:

• probabilities P(Xt,t+d |Hi) of observation sequences
Xt,t+d given a HMM Hi are firstly computed during
first pass of acoustic-phonetic decoding.
Rescoring with upper-models requires the
evaluation of P(Xt|Si), for each GMM Si matching
to the best phonetic sequence;

• as the search develops a part of the exploration
graph, various concurrent hypotheses are
evaluated. Each of them corresponds to a phonetic
sequence. It is clear that word-hypotheses could
share some phonetic subsequences competing

• state tying leads to involve the same state in
computation of different HMM probabilities; the
architecture of the acoustic handler should take
advantage of this state sharing;

• Gaussian tying could lead states to share some of
their Gaussian components. As Gaussian are
involved into different mixtures, probabilities
computation must be decoupled from the models
structure at the state level.

2.4.2. Handler architecture

In order to avoid multiple computation of a likelihood, we
separate clearly the search algorithm and the acoustic
handler which is in charge of acoustic probabilities
computing and caching. This handler is based on a 2-level
caching mechanism; as the search algorithm has to score
each hypothesis, it requires a probability P(Xt,t+d |Hi).

The acoustic handler searches this score in the level-1
cache (L1); if it is not found, this score is computed by
using the Viterbi algorithm and the probabilities of
emission P(Xt, |Si). These last ones are searched in the
level-2 cache (L2). If not found, these values are
computed by using a fast likelihood method which is
described below. L1 and L2 caches are implemented as
circular buffers. This last technique allows to decrease
likelihood computing time by about 15%, compared to the
classical FPU-based computation. Finally, likelihoods are
computed on-demand, allowing to limit the computed
scores to the ones effectively required by the search and to
take benefit from the lexical and linguistic constraints.

The figure 2 describes the global architecture of the
acoustic handler.

Fig. 2. Architecture of Speeral acoustic handler;

likelihood are computed on-demand, depending on the
paths which are effectively developed by the search
algorithm; the L1 cache stores acoustic probabilities of
an observation sequence given an HMM; the L2 cache
stores probabilities of an observation Xt for a state Si .
The fast likelihood estimation method is based on
Gaussian clustering and dynamic selection of relevant
clusters.

On-demand strategy is supposed to limit the number of

estimated probabilities. On the other hand, this strategy
implies some additional operations related to cache
management. In order to estimate the gain provided by
this technique, we perform some tests where full and on-
demand computation are compared. This comparison is

Time

Cache level 1
GMM likelihood

Time

Cache level 2
HMM likelihood

Gaussian probabilities
computation GMM probabilities

computation
HMM probabilities

computation

Search graph

Gaussian clusters Signal

achieved on 4 acoustic models which include respectively
6000, 60000, 90000 and 230000 Gaussian components.

Results confirm that on-demand computation provides
a significant gain in terms of decoding duration, which
remains between 1.5 to 6xRT (corresponding respectively
to 6k and 230K models). Nevertheless, it is clear that
efficient acoustic handling does not allow to reach a
decoding speed sufficient for spoken dialogue with
computer, in spite of a strict pruning scheme and a very
efficient likelihood computation (likelihood function is
written in assembly language, using SIMD instruction set
and 128 bits data alignment). This last technology
provides an absolute speed-up of 15%, compared to
classical FPU based function. On an Opteron 2.6GHz
processor, we observe a computation speed of about
90.106 likelihood per second, for 39 coefficient feature
vectors.

It is clear that models composed of more than 10
million parameters are not tractable under low-resource
constraints without any fast computation method. We
propose a method based on Gaussian selection (GS)
which is described in the next section.

Fig. 3. Impact of model complexity (in number of
Gaussian components) on the number of computed
likelihood. On demand strategy is compared to full
likelihood calculation, according to the complexity of
acoustic model. This method allows to reduce the
computational cost of acoustic scoring; nevertheless, the
number of computed likelihood grows linearly as the
model complexity increases.

2.5. Fixed-precision likelihood approximation

Numerous methods for fast likelihood computation
have been evaluated the last decades. Most of them rely
on Gaussian selection techniques which identify, in the
full set of Gaussian, the ones which contribute
significantly to the frame likelihood. We developed an
original method which guaranties a constant precision ε of
the likelihood approximation. This method consists in off-
line clustering of Gaussian and in on-line selection of
Gaussian clusters.

As proposed in some papers ([2],[4]), Gaussian are
clustered by a classical k-means algorithm on the full set
of Gaussian, using a minimum-likelihood loss distance.
Each center of cluster is a mono-Gaussian model Gi
resulting of the merge of all members of the cluster.

The on-line selection process consists in selecting a set
of clusters which models the observation neighborhood. It
is important to note that, on the contrary of classical
Gaussian selection methods, the number of selected
clusters is variable, according to the considered frame and
to the expected precision ε .

The clusters are selected by computing the likelihood
of the frame knowing each cluster center Gi; these
likelihood are used for partitioning clusters into two
subsets (tagged selected and unselected clusters)
respecting the rules: (1) each frame likelihood knowing a
selected cluster center is greater than each unselected one
and (2) the sum of unselected clusters likelihood is lower
than an a priory fixed precision threshold. Lastly, a
posteriori probabilities are computed using only Gaussian
belonging to selected clusters. Probabilities of unselected
Gaussian are supposed to be close to zero; they are
approximated by backing off to the cluster probabilities,
which are computed using the Gaussian center of the
related cluster.

0

5

10

15

20

25

30

6 K 60 K 90 K 230 K

Number of Gaussian components

N
um

be
r o

f c
om

pu
te

d
lik

el
ih

oo
d

(M
ill

io
n/

se
c)

On-demand Full computation

This Fixed Precision Gaussian Selection (FPGS)
method is designed to adapt dynamically the CPU time
dedicated to acoustic processing according to an a priory
fixed precision. In adverse acoustic conditions, it leads to
remain a good acoustic precision limiting computational
costs.

2.5.1. Evaluation

We test our method on the real-time configuration of

our recognition engine, in the framework of ESTER
evaluation campaign ([3]). ESTER aims to evaluate rich
transcription systems on French broadcast news. Materials
consist in 100 hours of radiophonic shows, recorded in
various acoustic conditions.

Acoustic models are trained on ESTER materials. They
includes 6000 HMM sharing 936 mixtures. State tying is
performed by decision tree algorithm ([9]). HMM set
contains globally about 60000 Gaussian components. In
order to evaluate FPGS efficiency according to precision
threshold and PDF cluster granularity, we estimated 2 set

of respectively 512 and 1200 clusters. The system
involved in this experiment is based on a 27k words
lexicon and full trigram language model.

The table 3 shows the impact of precision threshold
both on the number of selected Gaussian and in terms of
accuracy. Results are expressed according to the log-
precision α with α = log(1 − ε). This experiment is carried
out on 1 hour of speech material extracted from ESTER
broadcast news corpus. The granularity of the acoustic
space partition seems to impact slightly the system
performance. Results of table 3 and 4 suggest that larger
set of Gaussian cluster is more efficient with high
precision threshold, and worse in faster configuration. As
expected, the Gaussian ratio for 1200-cluster
configuration is lower than the one obtained with 512-
cluster one: more precise partitioning of Gaussian set
allows to target more precisely the components which
have to be selected. On the other hand, the set of Gaussian
center of cluster is twice bigger for the 1200-cluster
scheme and more cluster probabilities are systematically
computed. Moreover, in low precision configuration (ε ≤
−10), additional cost due to greater Gaussian ratio is
marginal, compared to the global cost of the decoding
process. Therefore, observed gains of decoding speed
remain low and finally, various clustering granularities
seem to lead to very close performance.

2.6. Profiling recognition engine

In order to estimate the effective contribution of each

component of recognition engine in the decoding
duration, we performed profiling runs. The system is
based on a 27k words lexicon and a fast pruning scheme.
We tested 3 configurations based on acoustic models
composed of respectively 60000 (60KG), 230000
(230KG) and 320000 (320KG) Gaussian components.
Results (figure 4) show that, in spite of fast likelihood
computation and caching mechanisms, acoustic model
complexity impacts strongly on the decoding speed. With
the smallest models, acoustic scoring takes about 20% of
the decoding duration. Using smaller models brings only
slight increase of decoding speed. Moreover, 320KG
models impact negatively on the decoding speed without
any improvement of accuracy, this last point being
probably due to training conditions (especially the amount
of training data).

Fig. 4. CPU-time requirements for the acoustic handler,
lexical and linguistic access, search algorithm.
Estimations performed on the 4xRT system based on a 27k
words lexicon, and acoustic models composed by
60000(60KG), 230000(230KG) and 320000 (320KG)
Gaussian components.

3. LARGE VOCABULARY CONTINUOUS

SPEECH RECOGNITION

In this section, we report experiment results aiming to
evaluate the impact of acoustic models and lexicon size on
performance, both in terms of accuracy and resource
consumption (memory footprint and CPU-time).
Experiments are carried out in the framework of ESTER
evaluation campaign, using a fast pruning scheme.

We tested 4 acoustic model profiles; the first is the one
involved in the 10xRT systems (230KG). It contains 3600
mixtures of about 64 Gaussian each, corresponding to a
total of 230000 Gaussian components. The second is a
variant of 230Kg decreasing the number of components
per mixture from 64 to 24, while the same topology
remains. We obtain a model (90Kg) composed by 90000
components. The 3rd model (60Kg) is composed by 3000
HMM, 936 mixtures and 60000 components. Lastly, we
use a very small context-independent models composed of
100 emitting states of 64 Gaussian each. All these models
are gender dependent. Experiments are conducted with 2
dictionaries containing respectively 27k and 65k words.

Results are reported in table 5 for 27k lexicon, and
table 6 for 65k lexicon. Reported memory footprint (RAM
occ.) is evaluated on a speech segment of 22 seconds. It
corresponds to the upper limit of memory used during the
decoding run.

Table 5. Real time factor (RT-factor), Word Error Rates
(WER) and memory footprint (RAM occ.) of recognition
system using 27k words lexicon. Test performed on 3
hours of ESTER development corpus.

Acoustic model 6.5Kg 60Kg 90Kg
RT-factor 0.55 0.65 1.05
RAM occ. 201 M 227M 346M
WER 40.7% 28.5% 26.8%

Table 6. Real time factor (RT-factor), Word Error Rates
(WER) and memory footprint (RAM occ.) of recognition
system using 65k words lexicon. Test performed on 3
hours of ESTER development corpus.

Acoustic model 6.5Kg 60Kg 90Kg
RT-factor 0.6 0.95 1.25
RAM occ. 256 M 260M 380M

60 KG

Acoustic

Linguistic

Search

Others

230 KG

1

2

3

4

320KG

Acoustic
Linguistic
Search
Others

WER 40.3% 27.5% 25.6%

Results show that lexicon growing leads to increase

decoding duration of about 20% to 30%, depending on the
acoustic configuration, while the accuracy is slightly
improved (about +1% absolute gain).

Considering the tradeoff between decoding speed and
accuracy, context-free model seems not to be a good
option: it allows to reach decoding speed close to the one
obtained by 60Kg models, while the accuracy is
dramatically worse (about 13% absolute WER!). It is clear
that low precision models lead to increase paths to
evaluate, spending in the search process the potential gain
which was obtained by reducing the acoustic model
complexity. Globally, system is able to quickly reach
performance close to our 10xRT system, which is about
21% WER. Very fast configuration can be used,
depending on resource availability and the targeted
performance.

4. CONCLUSION

We present a design for fast LVCSR; the proposed
methods for acoustic and linguistic models management
has shown their ability in efficient handling of large
vocabularies and high-resolution acoustic models: real
time is reached by a system of 27k words and 90000
Gaussian components. The proposed methods preserve
the functional model of the standard system; this approach
allows to define very different configurations (from
0.5xRT to 10xRT) by changing macro-parameters such as
pruning thresholds, acoustic resolution, acoustic and
linguistic models, etc. Nevertheless, more efforts may be
produced to embed this system in very light devices,
where no floating point unit is available and in which the
free memory remains lower than 100MB.

Finally, results show clearly that since good level of
performance can be reached using a lower resource
consumption level, optimal performances require very
expensive modeling and exhaustive search graph
exploration : our best results in unconstrained conditions
are obtained by combining 2 systems, with a decoding
time greater than 10xRT each, acoustic models of more
than 200000 Gaussian and several millions of estimated
trigrams or quadrigrams, for final performance close to
19% WER ([5]). It is clear that for custom application,
ASR systems must be pruned according to the application
needs (spoken dialogue system, speech mining, etc.) and
the resource affectation has to be considered from client-
oriented point of view.

5. REFERENCES

[1] Xavier L. Aubert. An overview of decoding
techniques for large vocabulary continuous speech
recognition. Computer Speech and Language, 16:89–114,
2002.
[2] E. Bocchieri. Vector quantization for the efficient
computation of continuous density likelihood. In IEEE,
editor, Proc ICASSP’93, volume 2, pages 692–696,
Speech Research Dept.,AT&T Lab., Murray Hill, 1993.
IEEE.
[3] S. Galliano, E. Geoffrois, D. Mostefa, K. Choukri, J.-
F. Bonastre, and G. Gravier. The ESTER Phase II
evaluation campaign for the rich transcription of French
broadcast news. In Proc. of the ECSCT, 2005.
[4] K.M. Knill, M.J. Gales, and S.J. Young. Use of
gaussian selection in large vocabulary continuous speech
recognition using HMMS. In Proc. ICSLP’96, volume 1,
pages 470–474, Philadelphia, PA, USA, 1996. Cambridge
University.
[5] Benjamin Lecouteux, Georges Linarès, Yannick
Estève and Julie Mauclair. System combination by
driven decoding. In ICASSP’07, 2007.
[6] D. Massonié, P. Nocéra, and G. Linarès. Scalable
language model look-ahead for LVCSR. InterSpeech’05,
Lisboa, Portugal, 2005.
[7] Stefan Ortmanns, Andreas Eiden, and Hermann Ney.
Improved lexical tree search for large vocabulary speech
recognition. In Proc. ICASSP, Seattle, USA, May 1998.
[8] Stefan Ortmanns, Hermann Ney, and Andreas Eiden.
Language- model look-ahead for large vocabulary speech
recognition. In Proc. ICSLP, Philadelphia, USA, October
1996.
[9] S.H. Young and P.C. Woodland. State clustering in
Hidden Markov Models-based continuous speech
recognition. Computer Speech and Language, 8:369–383,
1994.

	A SCALABLE SYSTEM FOR EMBEDDED LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION
	ABSTRACT

