
A SCALABLE SYSTEM FOR EMBEDDED LARGE VOCABULARY CONTINUOUS 
SPEECH RECOGNITION 

 
G. Linarès, D. Massonié, P. Nocéra, C.Lévy 

 
Laboratoire Informatique d’Avignon (LIA) 

University of Avignon, France 
georges.linares,dominique.massonie,christophe.levy,pascal.nocera@univ-avignon.fr 

 
 

ABSTRACT 
 
This paper presents a system for large vocabulary 
continuous speech recognition in condition of constrained 
hardware resources. We investigate efficient pruning and 
caching strategy aiming to handle extensive acoustic and 
linguistic modeling. Software components are analyzed in 
terms of resource consuming. Then, we evaluate the 
system performance in extreme configuration where 
acoustic and linguistic models are dramatically pruned. 
Results show that the system design we proposed allows 
to use large HMM-based acoustic models and trigram 
language models while performing very fast decoding, 
about 0.6 real-time on a standard desktop computer while 
remaining the transcript relevance. 
 
 

1. INTRODUCTION 
 

Embedded  Large  Vocabulary  Continuous  Speech  
Recognition (LVCSR) is one of the most promising 
application of speech processing.  The last decade, the 
speech technology was largely integrated in mobile 
systems as hardware performance was strongly improved. 
Nevertheless, light recognition systems offer usually 
restricted speech-based services, such as name dialing or 
voice command. Moreover, the embedding of LVCSR 
engine implies a specific design in which the models 
precision are degraded and the search algorithm is strictly 
pruned, in comparison to the ones involved in 
unconstrained systems. The fast improvement of hardware 
capacities may lead soon to an integration of more 
powerful Automatic Speech Recognition (ASR) system 
into light and mobile devices. Nevertheless, recent 
proposals of embedded systems require still some 
software adaptation and rigorous pruning of models 
involved in recognition process. 

In this paper, we investigate methods for reducing the 
resource required for LVCSR while preserving the 
functional model of the transcription machine. We focus 

on acoustic and linguistic resource management which 
allows to handle both large acoustic and linguistic models. 

The next section of this paper present the LIA LVCSR 
system. We describe firstly the search algorithm. Then, 
we focus on acoustic and linguistic handling. A fast 
acoustic manager is described and we propose an efficient 
caching technique for fast access to trigram probabilities.  

The third section presents the evaluation we achieved 
on large vocabulary tasks. Experiments are carried out in 
the framework of the ESTER [3] evaluation campaign. 

Lastly, we conclude and suggest some key-points to 
better improve the tradeoff between accuracy and resource 
consumption in LVCSR systems. 
 
 

2. SPEERAL DECODER 
 
2.1. Search Strategy 
 
The search engine of Speeral toolkit is an A*-based 
decoder.  A* is an algorithm dedicated to the search of the 
best path in a graph. It has been used in several speech 
recognition engines, generally for word-graph decoding. 
In Speeral, the search algorithm operates on a phoneme 
lattice, which are estimated by using cross-word and 
context-dependent HMM. 
The exploration of the graph is supervised by an estimate 
function F(hn) which evaluates the probability of the 
hypothesis  crossing the node n: 
 

F(hn) = g(hn) + p((hn) 
 

where g(hn) is the probability of the current hypothesis 
which results  from the partial exploration of the search 
graph (from the starting point to the current node n); p(hn) 
is the probe which estimates the probability of the best 
hypothesis from the current node n to the ending node. 
The stack of hypotheses is ordered on each node 
according to F(). The best paths are then explored firstly.  
This depth first search refines the evaluation of the current 
best hypothesis and low-probability paths are cut-off, 



leading to search backtrack. It is clear that precision of the 
probe function is a key point for search efficiency. We 
have produced substantial efforts to improve the probe by 
integrating, as soon as possible, all available information. 

The Speeral look-ahead strategy is described in the 
next section. 
 
2.1. Acoustic-linguistic look-ahead 
 
As explained previously, the probe function aims to 
evaluate the probability of each path which may be 
developed.  The more this approximation is close to the 
exact one, the sooner a decision of leaving or developing 
a path is taken. Moreover, the CPU-cost of this function is 
critical as it is used at each node of the search graph. We 
use a long-term acoustic probe combined with a short-
term linguistic look-ahead. The acoustic term is computed 
by a Viterbi-back algorithm based on context-free 
acoustic models. This algorithm evaluates the best 
acoustic probabilities from the end-point to the current 
one.  Of course, the evaluation of all partial paths are 
performed once, in a first pass. Nevertheless, for search 
consistency, the probe must always provide an upper limit 
of path probabilities. So, the best phoneme sequences are 
rescored by using upper-models. Upper models are 
context-free models resulting from the aggregation in a 
large HMM, of all the context-dependent states which 
were associated to a context-free model, remaining left-
right transition constraints. Hence, the probability of 
emission given the upper-model is an upper-limit of path 
probabilities. 

Anticipating the linguistic information (known as 
LMLA - Language Model Look-Ahead) enables the 
comparison of competing hypotheses before reaching a 
word boundary. The probability of a partial word 
corresponds to the best probability in the list of words 
sharing the same prefix: 
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where W* is the best possible continuation word and h 

the word history (partially present in g(hn )). The lexicon 
is stored as a PPT (Pronunciation Prefix Tree), see figure 
1. Each tree node contains the list of reachable words. To 
ensure the consistency between linguistically well formed 
hypotheses and pending ones, linguistic probabilities have 
to be computed at the same n-gram order. This means 
doing LMLA also at the 3-gram level. We developed a 
fast computation and approximation method based on a 
divide and conquer strategy ([6]). Our approach consists 
in first comparing the list W*with the list of available 
trained 3-gram stored in the LM. The LM is an on-disk 
tree structure containing lists of word probabilities at each 
n-gram level. Comparing lists at runtime spares most of 

the LM back-off computation with low overhead (lists 
size are shown on table 1). The LMLA approximation 
does not affect the results. Moreover we introduced pre-
computed LMLA probabilities to speed-up the 
computation of the biggest lists. 

 
2.3. Lexicon structure and compression 
 
The lexicon is stored as a Pronunciation Prefix Tree 

(PPT) for search efficiency [1]. Each node s (as a state 
reached during the decoding process) knows the wordlist 
of reachable words W (s) (see figure 1). The wordlist size 
decreases along the PPT to reach one single word at 
leaves. No other information like sub-tree dominance [7] 
is used. Due to pronunciation variation or tree scarcity, 
different nodes can share the same wordlist. As shown on 
table 2 most nodes are leaves. On average each wordlist 
tend to be shared by 3 internal nodes. Other properties of 
the lexical tree compression are also discussed in [8]. 

When the node is a leaf or due to PPT compression 
(figure 1) W (s) can contain one single word. The LMLA 
computation is then the same as a simple n-gram access, 
thus LMLA prefetches n-gram probabilities into the n-
gram cache. 
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Fig. 1.  A sample end of Pronunciation Prefix Tree.  Each 
node s contains the wordlist W (s) of reachable words. 
PPT compression is possible, for example the wordlists of 
word3 last two nodes are identical. Moreover if word1 
and word2 are two different pronunciation of the same 
word, then more wordlists could be reduced and shared 
earlier in the tree, from depth d + 1. 
 
 

Table 1: count of wordlist according to size. Most 
wordlists are smaller or equal to 5 words 

size all >5 >45 >98 >1000 >1500 
27k 191k 7k 402 - 15 9 
65k 403k 16k - 402 34 23 

 



Table 2 : count of nodes and wordlists. The compression 
ratio of wordlists to (total # of nodes - leaves) / # of 
unique wordlist, which is about 3. 

nodes & wordlist lexicon 
27k 

lexicon 
65k 

Total # nodes 191k 403k 
Nodes without list (leave) 140k 278k 
# of unique lists 18k 43k 
# of duplicate lists 10396 26415 
More than duplicate lists 5752 14837 

 
 
2.4. Acoustic Handler 
 
5.1.1. Motivation 
 

The a priori estimation of the contribution of each 
component in the decoding duration is difficult, as it 
depends on the search strategy and on the models 
complexity. Nevertheless, considering the com- plexity of 
acoustic models involved in LVCSR systems, the compu- 
tation of acoustic probabilities may take a large part of the 
decoding computational cost. [4] estimates this ratio 
ranges between 30% and 70% in a large vocabulary 
system. More recent systems use models of millions of 
parameters; such complexity should not be tractable 
without any fast calculation method. We produced 
substantial ef- forts in optimizing the acoustic 
management, by using an efficient caching scheme and an 
original method for fast-likelihood computation. A* 
decoding and state tying lead to an asynchronous use of 
acoustic probabilities, at HMM, GMM and Gaussian 
levels: 

• probabilities P(Xt,t+d |Hi ) of observation sequences 
Xt,t+d given a HMM Hi are firstly computed during 
first pass of acoustic-phonetic decoding. 
Rescoring with upper-models requires the 
evaluation of P(Xt|Si), for each GMM Si matching 
to the best phonetic sequence; 

• as the search develops a part of the exploration 
graph, various concurrent hypotheses are 
evaluated. Each of them corresponds to a phonetic 
sequence. It is clear that word-hypotheses could 
share some phonetic subsequences competing 

• state tying leads to involve the same state in 
computation of different HMM probabilities; the 
architecture of the acoustic handler should take 
advantage of this state sharing; 

• Gaussian tying could lead states to share some of 
their Gaussian components. As Gaussian are 
involved into different mixtures, probabilities 
computation must be decoupled from the models 
structure at the state level. 

 

2.4.2. Handler architecture  
 

In order to avoid multiple computation of a likelihood, we 
separate clearly the search algorithm and the acoustic 
handler which is in charge of acoustic probabilities 
computing and caching. This handler is based on a 2-level 
caching mechanism; as the search algorithm has to score 
each hypothesis, it requires a probability P(Xt,t+d |Hi ). 

The acoustic handler searches this score in the level-1 
cache (L1); if it is not found, this score is computed by 
using the Viterbi algorithm and the probabilities of 
emission P(Xt, |Si ). These last ones are searched in the 
level-2 cache (L2). If not found, these values are 
computed by using a fast likelihood method which is 
described below. L1 and L2 caches are implemented as 
circular buffers. This last technique allows to decrease 
likelihood computing time by about 15%, compared to the 
classical FPU-based computation. Finally, likelihoods are 
computed on-demand, allowing to limit the computed 
scores to the ones effectively required by the search and to 
take benefit from the lexical and linguistic constraints. 

The figure 2 describes the global architecture of the 
acoustic handler. 

 
Fig. 2. Architecture of Speeral acoustic handler; 

likelihood are computed on-demand, depending on the 
paths which are effectively developed by the search 
algorithm; the L1 cache stores acoustic probabilities of 
an observation sequence given an HMM; the L2 cache 
stores probabilities of an observation Xt for a state Si . 
The fast likelihood estimation method is based on 
Gaussian clustering and dynamic selection of relevant 
clusters.  

 
On-demand strategy is supposed to limit the number of 

estimated probabilities. On the other hand, this strategy 
implies some additional operations related to cache 
management. In order to estimate the gain provided by 
this technique, we perform some tests where full and on-
demand computation are compared. This comparison is 
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achieved on 4 acoustic models which include respectively 
6000, 60000, 90000 and 230000 Gaussian components. 

Results confirm that on-demand computation provides 
a significant gain in terms of decoding duration, which 
remains between 1.5 to 6xRT (corresponding respectively 
to 6k and 230K models). Nevertheless, it is clear that 
efficient acoustic handling does not allow to reach a 
decoding speed sufficient for spoken dialogue with 
computer, in spite of a strict pruning scheme and a very 
efficient likelihood computation (likelihood function is 
written in assembly language, using SIMD instruction set 
and 128 bits data alignment). This last technology 
provides an absolute speed-up of 15%, compared to 
classical FPU based function. On an Opteron 2.6GHz 
processor, we observe a computation speed of about 
90.106 likelihood per second, for 39 coefficient feature 
vectors. 

It is clear that models composed of more than 10 
million parameters are not tractable under low-resource 
constraints without any fast computation method. We 
propose a method based on Gaussian selection (GS) 
which is described in the next section. 

Fig. 3. Impact of model complexity (in number of 
Gaussian components) on the number of computed 
likelihood. On demand strategy is compared to full 
likelihood calculation, according to the complexity of 
acoustic model. This method allows to reduce the 
computational cost of acoustic scoring; nevertheless, the 
number of computed likelihood grows linearly as the 
model complexity increases. 
 
 
 
2.5. Fixed-precision likelihood approximation  

 

Numerous methods for fast likelihood computation 
have been evaluated the last decades. Most of them rely 
on Gaussian selection techniques which identify, in the 
full set of Gaussian, the ones which contribute 
significantly to the frame likelihood. We developed an 
original method which guaranties a constant precision ε of 
the likelihood approximation. This method consists in off-
line clustering of Gaussian and in on-line selection of 
Gaussian clusters. 

As proposed in some papers ([2],[4]), Gaussian are 
clustered by a classical k-means algorithm on the full set 
of Gaussian, using a minimum-likelihood loss distance. 
Each center of cluster is a mono-Gaussian model Gi  
resulting of the merge of all members of the cluster. 

The on-line selection process consists in selecting a set 
of clusters which models the observation neighborhood. It 
is important to note that, on the contrary of classical 
Gaussian selection methods, the number of selected 
clusters is variable, according to the considered frame and 
to the expected precision ε . 

The clusters are selected by computing the likelihood 
of the frame knowing each cluster center Gi; these 
likelihood are used for partitioning clusters into two 
subsets (tagged selected and unselected clusters) 
respecting the rules: (1) each frame likelihood knowing a 
selected cluster center is greater than each unselected one 
and (2) the sum of unselected clusters likelihood is lower 
than an a priory fixed precision threshold. Lastly, a 
posteriori probabilities are computed using only Gaussian 
belonging to selected clusters. Probabilities of unselected 
Gaussian are supposed to be close to zero; they are 
approximated by backing off to the cluster probabilities, 
which are computed using the Gaussian center of the 
related cluster. 
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This Fixed Precision Gaussian Selection (FPGS) 
method is designed to adapt dynamically the CPU time 
dedicated to acoustic processing according to an a priory 
fixed precision. In adverse acoustic conditions, it leads to 
remain a good acoustic precision limiting computational 
costs. 
 

2.5.1. Evaluation 
 
We test our method on the real-time configuration of 

our recognition engine, in the framework of ESTER 
evaluation campaign ([3]). ESTER aims to evaluate rich 
transcription systems on French broadcast news. Materials 
consist in 100 hours of radiophonic shows, recorded in 
various acoustic conditions. 

Acoustic models are trained on ESTER materials. They 
includes 6000 HMM sharing 936 mixtures. State tying is 
performed by decision tree algorithm ([9]). HMM set 
contains globally about 60000 Gaussian components. In 
order to evaluate FPGS efficiency according to precision 
threshold and PDF cluster granularity, we estimated 2 set 



of respectively 512 and 1200 clusters. The system 
involved in this experiment is based on a 27k words 
lexicon and full trigram language model. 

The table 3 shows the impact of precision threshold 
both on the number of selected Gaussian and in terms of 
accuracy. Results are expressed according to the log-
precision α with α = log(1 − ε). This experiment is carried 
out on 1 hour of speech material extracted from ESTER 
broadcast news corpus. The granularity of the acoustic 
space partition seems to impact slightly the system 
performance. Results of table 3 and 4 suggest that larger 
set of Gaussian cluster is more efficient with high 
precision threshold, and worse in faster configuration. As 
expected, the Gaussian ratio for 1200-cluster 
configuration is lower than the one obtained with 512-
cluster one: more precise partitioning of Gaussian set 
allows to target more precisely the components which 
have to be selected. On the other hand, the set of Gaussian 
center of cluster is twice bigger for the 1200-cluster 
scheme and more cluster probabilities are systematically 
computed. Moreover, in low precision configuration (ε ≤ 
−10 ), additional cost due to greater Gaussian ratio is 
marginal, compared to the global cost of the decoding 
process. Therefore, observed gains of decoding speed 
remain low and finally, various clustering granularities 
seem to lead to very close performance. 

 
 

2.6. Profiling recognition engine 
 
In order to estimate the effective contribution of each 

component of recognition engine in the decoding 
duration, we performed profiling runs. The system is 
based on a 27k words lexicon and a fast pruning scheme. 
We tested 3 configurations based on acoustic models 
composed of respectively 60000 (60KG), 230000 
(230KG) and 320000 (320KG) Gaussian components. 
Results (figure 4) show that, in spite of fast likelihood 
computation and caching mechanisms, acoustic model 
complexity impacts strongly on the decoding speed. With 
the smallest models, acoustic scoring takes about 20% of 
the decoding duration. Using smaller models brings only 
slight increase of decoding speed. Moreover, 320KG 
models impact negatively on the decoding speed without 
any improvement of accuracy, this last point being 
probably due to training conditions (especially the amount 
of training data). 

 

 

Fig. 4. CPU-time requirements for the acoustic handler, 
lexical and linguistic access, search algorithm. 
Estimations performed on the 4xRT system based on a 27k 
words lexicon, and acoustic models composed by 
60000(60KG), 230000(230KG) and 320000 (320KG) 
Gaussian components. 

 
3.  LARGE VOCABULARY CONTINUOUS 

SPEECH RECOGNITION 
 

In this section, we report experiment results aiming to 
evaluate the impact of acoustic models and lexicon size on 
performance, both in terms of accuracy and resource 
consumption (memory footprint and CPU-time). 
Experiments are carried out in the framework of ESTER 
evaluation campaign, using a fast pruning scheme. 

We tested 4 acoustic model profiles; the first is the one 
involved in the 10xRT systems (230KG). It contains 3600 
mixtures of about 64 Gaussian each, corresponding to a 
total of 230000 Gaussian components. The second is a 
variant of 230Kg decreasing the number of components 
per mixture from 64 to 24, while the same topology 
remains. We obtain a model (90Kg) composed by 90000 
components. The 3rd model (60Kg) is composed by 3000 
HMM, 936 mixtures and 60000 components. Lastly, we 
use a very small context-independent models composed of 
100 emitting states of 64 Gaussian each. All these models 
are gender dependent. Experiments are conducted with 2 
dictionaries containing respectively 27k and 65k words. 

Results are reported in table 5 for 27k lexicon, and 
table 6 for 65k lexicon. Reported memory footprint (RAM 
occ.) is evaluated on a speech segment of 22 seconds. It 
corresponds to the upper limit of memory used during the 
decoding run. 

 
 

Table 5. Real time factor (RT-factor), Word Error Rates 
(WER) and memory footprint (RAM occ.) of recognition 
system using 27k words lexicon. Test performed on 3 
hours of ESTER development corpus. 

Acoustic model 6.5Kg        60Kg 90Kg 
RT-factor 0.55          0.65          1.05 
RAM occ. 201 M       227M 346M 
WER 40.7% 28.5%      26.8% 

 
 

Table 6. Real time factor (RT-factor), Word Error Rates 
(WER) and memory footprint (RAM occ.) of recognition 
system using 65k words lexicon. Test performed on 3 
hours of ESTER development corpus. 

Acoustic model 6.5Kg        60Kg 90Kg 
RT-factor 0.6          0.95          1.25 
RAM occ. 256 M       260M 380M 
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WER 40.3% 27.5%      25.6% 
 
 
Results show that lexicon growing leads to increase 

decoding duration of about 20% to 30%, depending on the 
acoustic configuration, while the accuracy is slightly 
improved (about +1% absolute gain). 

Considering the tradeoff between decoding speed and 
accuracy, context-free model seems not to be a good 
option: it allows to reach decoding speed close to the one 
obtained by 60Kg models, while the accuracy is 
dramatically worse (about 13% absolute WER!). It is clear 
that low precision models lead to increase paths to 
evaluate, spending in the search process the potential gain 
which was obtained by reducing the acoustic model 
complexity. Globally, system is able to quickly reach 
performance close to our 10xRT system, which is about 
21% WER. Very fast configuration can be used, 
depending on resource availability and the targeted 
performance. 

 
 

4. CONCLUSION 
 

We present a design for fast LVCSR; the proposed 
methods for acoustic and linguistic models management 
has shown their ability in efficient handling of large 
vocabularies and high-resolution acoustic models: real 
time is reached by a system of 27k words and 90000 
Gaussian components. The proposed methods preserve 
the functional model of the standard system; this approach 
allows to define very different configurations (from 
0.5xRT to 10xRT) by changing macro-parameters such as 
pruning thresholds, acoustic resolution, acoustic and 
linguistic models, etc. Nevertheless, more efforts may be 
produced to embed this system in very light devices, 
where no floating point unit is available and in which the 
free memory remains lower than 100MB. 

Finally, results show clearly that since good level of 
performance can be reached using a lower resource 
consumption level, optimal performances require very 
expensive modeling and exhaustive search graph 
exploration : our best results in unconstrained conditions 
are obtained by combining 2 systems, with a decoding 
time greater than 10xRT each, acoustic models of more 
than 200000 Gaussian and several millions of estimated 
trigrams or quadrigrams, for final performance close to 
19% WER ([5]). It is clear that for custom application, 
ASR systems must be pruned according to the application 
needs (spoken dialogue system, speech mining, etc.) and 
the resource affectation has to be considered from client-
oriented point of view.  
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