
Robust Feature Combination for Speech Recognition  
using Linear Microphone Array in a Car 

 
Yasunari Obuchi1 and Nobuo Hataoka2

 
1 Central Research Laboratory, Hitachi Ltd, Kokubunji, Tokyo 185-8601, Japan 

2 Department of Electronics and Intelligent Systems, Graduate School of Electronics, 
Tohoku Institute of Technology, Sendai, Miyagi 982-8577, Japan 

 
 

ABSTRACT 
 
When speech recognition is performed in a car 
environment, there are two important robustness issues 
that should be taken into account. The first robustness is 
related to the noisy acoustic condition, and it has been one 
of the most  popular research topics of in-vehicle speech 
recognition. In contrast, the second robustness, which is 
related to unstable calibration of the audio input, has not 
attracted much attention. Consequently, the performance 
of speech recognition would degrade greatly in a real 
application if the input device such as a microphone array 
is badly calibrated. We propose robust feature 
combination in the MFCC domain using speech inputs 
from a linear microphone array. It realizes robust (from 
both the noise and calibration viewpoints) and practical 
speech recognition applications in car environments. Even 
a simple MFCC averaging approach is effective, and a 
new algorithm, Hypothesis-Based Feature Combination 
(HBFC), improves the performance. We also extend 
cepstral variance normalization as variance re-scaling, 
which makes the feature combination approach more 
robust. The advantages of the proposed algorithms are 
confirmed by the experiments using the data recorded in a 
moving car. 

 

1. INTRODUCTION 
 
There have been a lot of studies to realize robust speech 
recognition in noisy environments such as in cars and in 
public spaces (stations, stores, airports, etc.). Speech 
recognition using a microphone array is one of the 
successful approaches to realize such robustness. In most 
cases, microphone array techniques are implemented in 
the time domain or in the spectral domain to enhance the 
input signal to obtain better recognition performance. It is 
because those techniques are mainly focusing on the 
phase difference between the target signal and interfering 

noises. If the noise is directional, the phase difference can 
be measured clearly, and those typical microphone array 
approaches would work effectively. However, they are 
less effective for non-directional noises. In car 
environments, the speech recognition system is 
surrounded by various noise sources, and the directional 
noise assumption does not hold. The array processing 
algorithm should treat non-directional noises effectively. 

The second problem is the robustness in the cases 
when calibration of the microphones and audio systems 
are not maintained well. When we use a microphone array 
in real applications, it is hard to maintain the stability of 
microphone characteristics, and it is the reason why there 
is a large discrepancy between the performance in the 
laboratory and in the real field. Hence the assumption that 
the power spectra of multiple inputs are identical does not 
hold, and we have various cepstral (MFCC) features 
corresponding to the multiple microphones. It is then 
reasonable to expect that combining them in the cepstral 
domain may improve the speech recognition performance. 
In fact, the Gaussian statistical nature of the cepstral 
features of speech suggests the isotropic nature of the 
cepstrum space, and approves the effectiveness of feature 
combination in the cepstral domain. Moreover, since the 
speech can be modeled precisely in the cepstral domain 
using hidden Markov models (HMMs), we can take 
advantage of the prior knowledge about speech if we 
work in the cepstral domain. 

In [1], we studied MFCC combination of the dual-
microphone system, and proposed Hypothesis-Based 
Feature Combination (HBFC). In [2], the concept of 
feature combination in the cepstral domain was extended 
to a linear microphone system, and a problem of cepstral 
variance normalization was raised. In this paper, these 
issues are investigated in detail, and an approach to solve 
the cepstral variance normalization problem will be 
presented.  
 

2. MFCC AVERAGE AND VARIANCE  
RE-SCALING 



 
In [1], we showed that we can improve the speech 
recognition accuracy simply by averaging two MFCC 
sequences of the dual-microphone systems. Naturally, it 
can be extended to a multiple-input system as: 
 

  
(1) 

 
 

where yi = {yitd | 1<=t<=T, 1<=d<=D} is the MFCC 
feature vector made from the observed signal by the i-th 
microphone, and xave is the corresponding combined 
feature vector. N is the number of microphones, T is the 
number of time frames, and D is the dimension of MFCC 
used.  

However, this simple averaging does not work well, 
especially in the case of large N. Taking into account that 
the arithmetic mean in the MFCC domain is almost 
equivalent to the geometric mean in the power spectral 
domain, it tends to take a smaller value. In particular, such 
a change occurs if the observed MFCC values have 
largely different values. Figure 1 shows the results of our 
preliminary experiments, in which we calculated 
framewise ratios of absolute values of two feature vectors 
obtained by single input and by averaging seven inputs 
and made a histogram. It is shown that the feature vector 
became smaller by averaging in more than 65% frames. 
The mean of the ratio was 0.95. 

 

 
A simple solution to this problem is to multiply a fixed 

normalization factor to all the MFCC values 
 

(2) 

 
If we use Cepstral Mean Normalization (CMN) [3], the 
cepstral mean does not change by eq. (2), and eq. (2) can 
be interpreted as re-scaling of the cepstral variance.  
 

3. GMM-BASED VARIANCE NORMALIZATION 
 
As shown in Fig. 1, the cepstral variance of the averaged 
feature vector tends to be smaller than the original one. It 
can be compensated by eq. (2), but the optimal value of 
the scaling factor alpha is not obvious from eq. (2) itself. 
Therefore, we use Gaussian Mixture Models (GMMs) to 
estimate the effectiveness of a specific value of alpha. 

It is natural to expect that the GMM score of the 
original feature vector is higher than that of the corrupted 
feature vector. We carried out a set of preliminary 
experiments, in which we added all frame-level GMM 
scores to obtain an utterance-level GMM score, using 
various values of alpha. Contrary to our expectation, it 
was revealed that the GMM score takes the maximum 
with a very small value of alpha such as 0.2, whether the 
original or averaged feature vector was re-scaled. The 
results indicate that either too large or too small GMM 
score means highly corrupted feature vectors. Therefore, 
our criteria must not be the absolute value of the GMM 
score, but the relative value of the GMM score compared 
with the single input feature vector.  

Equation (3) is the definition of so-called GMM-based 
variance normalization, proposed in this paper as the 
conclusion of the above discussion. 

 
(3) 

 
 

Here, the optimal value of alpha is chosen from a finite set 
of candidate values. S(x) is the GMM score of the feature 
vector x.  
 

4. HYPOTHESIS-BASED FEATURE 
COMBINATION OF MULTIPLE INPUTS 

 
As the huge success of the speech recognition research 
indicates, the speech signal can be modeled precisely in 
the cepstral (MFCC) domain. Working in the MFCC 
domain has an advantage that we can use the prior 
knowledge about the speech model in a framework of the 
feature combination. Figure 2 shows the schematic 
diagram of Hypothesis-Based Feature Combination 
(HBFC) applied to more than two microphone inputs. On 

Fig.1  Comparison of single input feature 
          and averaged feature. 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
the left hand side, one channel (typically the central 
microphone) was chosen to be used in the first decoding 
process, and the obtained speech recognition hypothesis is 
used to synthesize the feature vector using the forced-
alignment result and HMM. Feature synthesis is a simple 
procedure in which the mean vectors of the HMM state 
sequence (result of forced-alignment) are simply 
concatenated. On the right hand side, feature vectors of all 
the other channels are averaged. Finally, the outputs of 
two separate processes are combined by taking a simple 
weighted average.  
 
 
 
 

(4) 
 

where xsyn is the output of the left hand side of Fig. 2, xave 
is the output of the right hand side of Fig. 2, N is the 
number of inputs, and w is the weight parameter. In our 
experiments, N=7 and w=0.1 are used. 
 

5. EXPERIMENTAL RESULTS 
 
5.1. Database and setup 
 
We carried out several sets of experiments to evaluate 
various implementations of feature combination in the 
MFCC domain. The evaluation data was recorded in a real 
car which was running on urban roads. The database is 
made of 3620 utterances in total, uttered by 18 speakers 
(11 male and 7 female). The task is 152 Japanese POI 
(points of interest) isolated word recognition (IWR) to 
input the destination to the navigation system. The 
speaker sat in the passenger seat, and was prompted each 
time to speak by a beep. Each utterance was roughly 
endpointed by a fixed time-window from the beep 
position, so the utterance contains relatively high-

were recorded by a microphone array, which is made of 
seven linearly located microphones. These microphones 
were numbered from 1 to 7 in the direction from the 
driver's side to the window side, and placed at intervals of 
10cm, 5cm, 5cm, 5cm, 5cm, and 10cm. The average SNR 
of all recorded data was estimated as -3,4dB, but most of 
the noise exists in lower frequency range, and the 
estimated SNR increased to 10.0dB after applying a 
bandpass filter with a 400Hz-5500Hz pass band. More 
details of the database can be found in [4]. 

For the recognition experiments, we 

percentage of the non-speech segment. The utterances 

prepared our 
ori

.2. MFCC average 

igure 3 shows the recognition results obtained by the 

he line of 
alpha

ginal decoder and acoustic models. The acoustic 
models were made of Japanese triphones (3 states/model, 
6 Gaussian mixtures/state) and trained using 16 hours of 
clean speech. All speech data were sampled by 16kHz, 
converted to a 13 dimension MFCC feature vector every 
10ms, and either CMN or Cepstral Mean and Variance 
Normalization (MVN) [5] was applied. 
 

Fig. 2. Schematic diagram of Multiple-input  
           Hypothesis-Based Feature Combination. 
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F
averaged and re-scaled MFCC features. The recognition 
rates of single input (CMN:87.43% and MVN:86.32%) 
and a delay-and-sum beamformer [6] (CMN:88.20%) are 
shown by the horizontal lines for comparison.  

When we look at the data points on t
=1.0, we can confirm the recognition rates without  
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Fig. 3. Experimental results of MFCC average. 

e re-scaling, which are 83.15% (CMN) a  
88.87% (MVN). Since the feature vectors after CMN have 
larger variety over microphones than MVN, the variance 
of their average tends to be smaller, and it results in the 
lower recognition rate.  However, if we can use the 
optimal value of alpha (1.30 for CMN and 0.85 for MVN), 
the recognition rate would be much higher than the 
standard delay-and-sum beamformer. 



Next, we tried GMM-based variance normalization. 
The results obtained with CMN are shown in Fig. 4. In 
this figure, "GMM score" means the sum of the utterance-
level relative GMM scores:  

 
 

(5) 
 

 
where subscript j represents each utterance and N is the 
number of test utterances. It is clear that the curve of the 
recognition rate of the average and the GMM score are 
almost symmetric. The GMM score takes the smallest 
value with alpha=1.25, with which the recognition rate is 
89.72%. If we apply GMM-based variance normalization 
utterance by utterance, the recognition rate becomes 
90.00%, which is shown as "Rate (optimized)" in the 
figure.  

Figure 5 shows the equivalent results obtained with 
MVN. It is not as symmetric as in Fig. 4, but there is a 
similar tendency, and the recognition rate of the GMM-
based variance normalization is 88.26%, which is still 
better than the delay-and-sum beamformer.  

 
 
 

 
 

 
5.3. Hypothesis-Based Feature Combination 
 
In the final set of experiments, we tried HBFC with 
variance re-scaling. Figure 7 shows the results obtained 
with HBFC and CMN. The symmetric nature of the GMM 
score and the recognition rate is preserved well. With a 
fixed scaling factor, the highest recognition rate of 
89.93% was obtained with alpha=1.5, and the recognition 

rate of GMM-based variance normalization is still higher 
than it (90.00%).  

Figure 8 shows the results obtained with HBFC and 
MVN. In this case, the lowest GMM score was obtained 
with the alpha even lower than 0.7, and the two curves  

 

 
 

 
 

Fig. 6. Comparison of GMM scores, recognition rates 
        for averaged features, and recognition rates of 
        GMM-based variance normalization. All feature 
        vectors were normalized by MVN. 

 
 

Fig. 5. Comparison of GMM scores, recognition rates 
        for averaged features, and recognition rates of  
        GMM-based variance normalization. All feature 
        vectors were normalized by CMN. 

 

Fig. 7. Comparison of GMM scores, recognition rates 
        for HBFC, and recognition rates of GMM-based 
        variance normalization. All feature vectors were 
        normalized by CMN 



 
 

 
 
(GMM score and HBFC recognition rate) are not 
symmetric. Consequently, the recognition rate of GMM-
based variance normalization is lower than the HBFC 
recognition rates near alpha=1.0. However, it is worth 
mentioning that the recognition rate of GMM-based 
variance normalization is higher than that of HBFC with 
alpha=0.7, where the GMM score is smallest (in this 
figure). The degradation of GMM-based variance 
normalization from the highest recognition rate of HBFC 
is 3.07 points. 
 

6. CONCLUSIONS 

In this paper, we have shown how speech recognition 
accuracy can be improved by various ways of feature 
combination in the MFCC domain. Simple averaging of 
MFCC features tends to lower the recognition rate, 
especially when only the cepstral means are normalized 
(CMN). However, such degradation can be explained by 
the fact that the averaged MFCC features tend to be 
smaller than the original MFCC feature, and it can be 
compensated by introducing variance re-scaling. 

Next, we proposed a new algorithm to estimate the 
optimal value of the scaling factor, using the GMM score 
of the re-scaled feature vector and the single input feature 
vector. Experimental results have shown that the proposed 
algorithm worked quite well if the feature vectors were 
normalized by CMN. 

Figure 9 shows the comparison of the algorithms 
evaluated in this paper. As mentioned in [2], MVN-HBFC 
gives the highest recognition rate without variance re-
scaling, but the problem with CMN-ave and CMN-HBFC 
were solved by the proposed algorithm. 

 Fig. 8. Comparison of GMM scores, recognition rates 
        for HBFC, and recognition rates of GMM-based 
        variance normalization. All feature vectors were 
        normalized by MVN 

 
 

Fig. 9. Comparison of various algorithms evaluated in 
        this paper. The highest recognition rate in all is 
        90.14% with MVN-HBFC (optimal scaling and 
        no scaling coincided). 
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