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ABSTRACT

Head tracking is a key component in applications such as human
computer interaction, person monitoring, driver monitoring, video
conferencing, and object-based compression. The motion of the
head of a driver head can tell a lot about his/her mental state; e.g.
whether he/she is drowsy, alert, aggressive, comfortable, tense or
distracted, etc. This paper reviews an optical flow based method
to track the head pose, both orientation and position, of a person
and presents results from real world data recorded in a car envi-
ronment.

1. INTRODUCTION

Driver behavior modeling and fatigue detection is an important
feature in developing new driver assistance systems and smart cars.
These intelligent vehicles are intended to be able to warn or acti-
vate other safety measures when hazardous situations have been
detected such as fatigued or drunk driver, so that a system can be
developed to actively control the driver before he/she becomes too
drowsy, tired or distracted [1]. The pose of the head can reveal
numerous clues about alertness, drowsiness or whether the driver
is comfortable or not. Furthermore knowing the pose of the head
will provide a basis for robust facial feature extraction and feature
point tracking.

This paper reviews a method for tracking the driver’s head us-
ing normal flow constraint (NFC) [2] which is an extension of
the original optical flow algorithm [3]. Optical flow is the two-

dimensional vector field which is the projection of the three-dimensional

motion onto an image plane [4]. It is often required to use complex
3 Dimensional(3-D) models or non-linear estimation techniques to
recover the 3-D motion when depth information is not available.
However when such observations are available from devices such
as laser range finders or stereo cameras, 3-D rigid body motion
can be estimated using linear estimation techniques. Furthermore
combining brightness and depth constraints tend to provide more
accuracy for sub pixel movements[2] [5].

In the following section preprocessing and initialization of the
tracker, then the derivation of brightness and depth constraints and
finally a solution for obtaining motion parameters is described. In

section 3,we present experimental results demonstrating that the
algorithm can reliably track the drivers head movements using
stereo data collected from a dynamic car environment.

2. MOTION ESTIMATION

2.1. Face Detection

At the beginning of motion estimation algorithm, a fast face detec-
tor [6] scans the intensity image for face regions. The face detector
is trained to detect only frontal faces therefore it can be assumed
that the initial rotation of the head is aligned with the camera. The
initial region for the head is detected by the face detector and then
at each step the region is updated based on the tracker output.

2.2. Brightness Constancy Constraint

A 3-D point in space is represented by its coordinate vector X =
[X Y Z]T and the 3-D velocity of this point is represented as V =
[V Vi, V2]T. When this point is projected onto the camera image
plane using some projection model, the point will be mapped to
]T

2D image coordinates £ = [z y]* and the motion of the 3-D point

in space will induce a corresponding 2D velocity vector onto the
camera image plane 7 = [v, v,]T.

An equation can be derived that relates the change in image
brightness at a point to the motion of the brightness pattern. As-
sume that I(z,y, t) represents the brightness of a point (x,y) in
the image plane at a time ¢. It can be assumed that the brightness of
a particular point in the pattern remains constant even though the
point has moved. This assumption is only partially true in practice.
In situations such as occlusions, disocclusion, changes in intensity
due to changes in lighting, the appearance of pixel patches does not
represent physical movement of points in space. The assumption
may be expressed for frames at ¢ and ¢ 4 1 as follows:

I(z,y,t) = I[(z + v (2, y, 1),y + vy, y, 1), t +1) (1)

where I(x,y, t) represents the image intensity and v, (z, y, t) and
vz (x, y, t) are the x and y components of the 2D velocity vector.



Taylor expansion of the right hand side of Equation (1) is

I(:Uayv t) = I(x7y7t) + [z(-f,y, t)vz(x7y7t)

(2)
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where I, (z,y,t),l,(x,y,t) and It (z,y, t) are the image gradients
with respect to x, y and ¢ as a function of space and time. Can-
celing out the I(z,y, t) terms and rearranging Equation (2) into a
matrix form yields the commonly used optical flow equation:

Y
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The above equation constraints the velocities in the 2D image plane,
but we are interested in the 3-D-world velocities. Therefore for a
perspective projection camera with focal length f we obtain:
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when written in matrix form, becomes:
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By substituting the righthand side of equation (5) for ¥ into equa-
tion (3), we obtain the brightness constraint equation for 3-D ob-
ject velocities:

_ 1 f 0 —z |~
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Any rigid body motion can be expressed as an object going under
instantaneous translation T' = [tz t, t-]T and instantaneous rota-
tion Q = [w, wy w.]" where Q represents the orientation of the
axis of rotation and (2| is the magnitude of rotation per unit time.
For small rotations V can be approximated as:

VaT+axX=T-XxQ (7

The cross product of two vectors can be written as the product
of a skew-symmetric matrix and a vector. By rearranging X x (2

into:
0 -7 Y
XXQ:XQ, where X = Z 0 -X
-Y X 0

we can express equation (7) in a matrix form

V=Q¢ ®)
where d_; = [fT QT]T is the instantaneous motion vector and
where

100 0 —-Z Y
Q=[-X]=]0 10 Z 0 -X
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When the righthand side of equation (8) is substituted into equation
(6), a linear equation which relates pixel intensity values to rigid
body motion parameters is obtained for a single pixel.

g, = % [fL. fI, — (zIs +y1,)] Qé ©)

This is the generic brightness constraints used in many of the previ-
ous approaches [2] regarding 3-D motion and pose tracking. When
3-D world coordinates are not known one needs non-linear esti-
mation techniques to solve for the motion. The estimation prob-
lem can be simplified to a linear system using 3-D models when
shape prior of the object being tracked is known. If 3-D-world
coordinates are available it is relatively easy to solve for this equa-
tion system, and non-linearities can be avoided. Not using 3-D
shape models reduces any errors introduced in the latter class of
approaches.

2.3. Depth Constancy Constraint

Assuming that video rate depth information is available for every
pixel in the intensity image, similar formulations can be derived
using the disparity image. Therefore any changes in the depth im-
age over time can be related to rigid body motion. A point on the
rigid body surface, located at (x,y) at time ¢ will be at location
(z + vz, y + vy) at time t 4 1. The depth values of any particular
point at image space and time should remain the same unless the
particular point goes under any depth translation between frames ¢
and ¢ + 1. In mathematical terms, this can be expressed in a way
similar to equation (1)

Z(x,y, )+ Va(z,y,t) = V(z+v(z,y,t), y+vy(z,y,t), t+1)

(10
Following the same steps that are used to derive the brightness
constancy constraint equation, an analogous depth constancy con-
straint equation can be derived [2]. Rewriting the first order Taylor
series expansion of the right hand side of Equation (10) in matrix
form we obtain

~Ze=12:Z)) | |
y

v ] —V. (1)

By substituting the 3-D world velocities into Equation (11) using
the perspective projection model yields:

f 0 —

~2,=12:2)| P

]V—vz (12)

Since any rigid body motion can be expressed as an object going
under instantaneous translation 7' and instantaneous rotation €.
Substituting the 3-D velocity vector V with Q(E as shown previ-
ously, produces

~Zi = =[fZe [ 2y — (Z+xZs +yZ,)|Qd  (13)

1

7l
The derived formulation above is the analogous form of the equa-
tion (9) that relates the change in image brightness at a point to



the rigid body motion. Brightness constancy constraint equation
depends on the assumption that the brightness of a particular point
in the pattern remains constant. Since this assumption is only true
under some conditions, the outcome is an approximation at best.
In contrast Equation(13) makes use of the change in the dispar-
ity image, which reflects the true dynamics of the motion. Since
the disparity image is not affected by changes in illumination, the
depth constancy constraint in Equation (13) yields more accurate
results then in Equation (9) in scenarios that involve illumination
changes.

2.4. Orthographic Projection

In most cases of interest in this work, camera projection can be
modeled as orthographic projection without introducing much er-
ror into the system. Such an approach would simplify the con-
straint equations therefore would reduce the computational load.

Deriving the analogous versions of Equations (9) and (13) is
straightforward. All occurrences of image plane x and y are re-
placed with their real world counterparts X and Y, therefore any
real world velocities will be equivalent to their image plane coun-
terparts; v, = V; and v, = Vj,. Substituting the simplified ver-
sions of real world and image plane velocity relations into Equa-
tion (3) a much more simpler form of this relation is obtained

Ve
Vg 1 1 0 O
=— Vv, (14)
[vy Z|l0 1 0 VZ

Inserting the simplified orthographic projection matrix into Equa-
tions (5) and (12) yields to the orthogonal projection analogs of
the Equations (9) and (13):

(I I, 0)Q¢ (15)
(Zs Z, —1)Q¢ (16)
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2.5. Shifting the World Coordinate System

Since Euler rotations are defined around the origin, translating 3-D
coordinates to the centroid X, o = [Xo Y, Z,] would increase the
numerical stability of the solution. Such a shift in the coordinate
system would only affect Q, and the motion parameter vector 5
will compensate the for shift. We can rewrite Equation (9) as

= L Sl — @L+yl)QF an
where
1 0 0 0 (Z-2,) —(Y-Y,)
Q=010 —(Z2-2,) 0 (X - Xo)
00 1 (Y-Y,) —(X-X,) 0

and ¢ = [T/" 77T

2.6. Least Squares Solution

In the previous sections brightness and depth constancy constraint
formulation are derived. These formulations try to approximate
a single pixel’s velocity as it undergoes instantaneous translation
and rotation. Since these constraint equations are linear they can
be stacked up in a matrix formulation by = ng across N pix-
els which belong to the rigid object that is being tracked. Where
by € RN*1 is the temporal intensity derivative and H; € RN *6
is the constraint matrix for brightness values. Vector q_g is the mo-
tion vector that is to be solved for. A similar formulation can be
obtained for depth constraints by = Hzgg as well. Given that
N > 6, the least squares method can be used to solve for the
motion parameter vector 5 independently for each system. Alter-
natively we can combine the two equations into a single equation

S H | - br
b=Hgp, where H = b= - 18
e[ 8 15[ 5] s

in order to solve for a single vector (5, where ) is the scaling factor
for depth constraints. In situations where the disparity image is
more reliable than the intensity image, such as fast changing illu-
mination conditions, values higher than 1 should be chosen for ).
In other situations where it is known that intensity image is more
reliable than the disparity image, values smaller than 1 should be
chosen for A. The least-squares solution for the equation above is:

¢=MH"H) 'H b (19)

The least squares solution gives out the motion vector for a set
of pixels that belong to the object of interest. These pixels are
selected from the images where both intensity and depth images
are well defined.

3. PERFORMANCE AND RESULTS

We have tested this algorithm in a real car environment. A bum-
blebee stereo camera system has been used for data acquisition
[7]. The camera hardware analyzes the stereo images and estab-
lishes correspondence between pixels in each image. Based on
the camera’s geometry and the correspondences between pixels in
the images, it is possible to determine the distance to points in the
scene. Without any special optimizations the tracker can update
pose estimations based on 2000-3000 pixels per frame at a rate of
60Hz on a Celeron 1.5 GHz laptop.

Performance of the tracker has been tested using the data col-
lected from “UYANIK?” [8]. Several sequences of length 500 frames
or roughly 30 seconds of video with both intensity and dispar-
ity images has been recorded. The sequences involve all natural
head movements: throughout the video the driver rotates his head
checking out left, right and rear mirrors of the car and looks down
at the gear. Some outputs from the tracking algorithm can be seen
in Figure 1.



Fig. 1. Result of the driver head tracker at frames: 0, 60, 110, 150,
230, 400

It has been observed that the combined brightness and depth
constraints tend to complement each other. This occurs both be-
cause the combined constraints provide more data to base the mo-
tion assumptions on and also because each constraint helps to com-
pensate the shortcomings of the other constraint. The disparity im-
age being insensitive to changes in illumination, it provides better
constraints in situations were illumination changes suddenly, but
due to the extraction method of the disparity image, it is often very
noisy and incomplete with missing patches. On the other hand, the
intensity image is complete and less noisy.

Due to the differential nature of the tracker over long sequences
of video, it is observed that drifts are very likely to occur. These
drifts occur because of both noisy image acquisition and that com-
putational errors on these noisy data accumulate over time and re-
sult in a drift. Therefore to make the algorithm more robust, it
should be backed with an algorithm that resets pose parameters
when the drift becomes significant.

4. CONCLUSION AND FUTURE WORK

In this paper implementation and demonstration of an optical flow
based method for tracking a rigid body object, in this work the
human head, in a car environment with 6 degrees of freedom is
presented. The method is able to handle both translational move-
ments in depth and rotational movements both in and out of the
image plane. The algorithm has been successfully tested in a dy-
namic car environment with sudden changes in illumination.
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