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ABSTRACT 
 
This paper describes recent advances in the analysis and 
classification of driver behavior in actual driving scenarios. We 
employ data obtained from the UTDrive corpus to model driving 
behavior and to detect if distraction due to secondary tasks is 
present. Hidden Markov Models (HMMs) are used to capture the 
sequence of driving characteristics acquired from the vehicle’s 
CAN-Bus (Controller Area Network) information. Driver 
behavior is described and modeled using data from steering 
wheel angle, brake status, acceleration status, and vehicle speed. 
We evaluate data and models in three distinct classification 
tasks: 1) action classification, 2) distraction detection, and 3) 
driver identification. The aim of action classification is to 
categorize long-term driving behaviors such as turning, lane 
changing, stopping, and constant/no change (neutral driving). 
The goal of driver identification task is to classify drivers from 
their driving behavior characteristics, and distraction detection 
identifies whether the driver is under distraction due to 
secondary tasks. Experiments were conducted using 9 drivers 
from the UTDrive corpus. We report accuracy on modeling 
driver behavior based on these studies and discuss our future 
work. Initial results show that event detection for driving can be 
accomplished at rates ranging from 30-70% depending on the 
number of unique conditions based on CAN-Bus signals. 
 

1. INTRODUCTION 
 
In 2005, more than 43,000 people died in vehicle crashes in the 
U.S.A. according to the National Highway Traffic Safety 
Administration (NHTSA). In addition, NHTSA estimates that 
20-30% (1.2 million accidents) of all motor vehicle crashes are 
caused by driver distraction (using cell phones, eating, drinking, 
entering data into navigation system, etc.)[1]. Today, the 
solution to reducing accidents from driver distraction are to 
introduce laws that prohibit using cell phone and text messaging 
while driving. However, as the number and complexity of in-
vehicle information and entertainment systems increase, these 
restriction laws cannot stop drivers from performing secondary 
tasks. Moreover, such laws would have negative effects on the 
development of new technologies for the car. An alternative to 
instituting additional laws is the development of a Smart Car 
System. If such a system is built into the car, the car can detect if 
drivers are distracted due to secondary tasks. Moreover, the 
system would conduct specific reactions such as slowing down 

the car’s velocity and alerting the driver. Recent research 
activities focused on driver behavior modeling such as analysis 
and modeling of personality with a Gaussian Mixture Model 
(GMM) framework with driving behavior signals (e.g., 
following distance, vehicle speed) [3], and modeling and 
prediction of human behavior employing a set of dynamic 
models sequenced together by a Markov chain with driving 
signals (e.g., steering-wheel angle, brake position, and 
accelerator position) [4] show great promise.   

In this paper, we focus on the analysis and classification of 
driver behavior in actual driving environment using CAN-Bus 
information. In particular, driver behavior models are trained 
and used for classifying driving actions, detecting distractions, 
and identifying driver identity. The driving data from 9 drivers 
were used in our study. Each driver data was segmented into 
individual long-term behaviors (e.g., turning, lane changing) and 
distraction tasks (e.g., tuning a radio, interacting with an 
automatic voice portal), in order to analyze the characteristics of 
each driving behavior. In addition, two-dimensional plots show 
the relationship of two significant signals that represent driver 
behaviors.  Finally, we conducted 3 separate classification 
experiments: action classification, distracting detection, and 
driver identification using HMM and GMM topology. After the 
completion of all of these processes, we found that an HMM 
framework could be used to effectively detect and classify driver 
behavior. Ultimately, the application of this study can enhance 
the safety of drivers on the road. Also, the outcome of the study 
can coexist with other new technology such as navigation 
systems and entertainment systems, without restricting drivers 
use of these technologies and systems. 

In our work, the driving data is a subset of the UTDrive 
corpus. The UTDrive corpus consists of rich multimodal driving 
data synchronously acquired in actual driving environment. The 
recording data are two video streams (driver face and front view 
of vehicle), audio streams from a five-channel microphone array 
and a close-talk microphone array, brake and gas pedal pressure 
sensors, following distance, CAN-Bus information (steering-
wheel angle, vehicle speed, engine speed, and brake position), 
and GPS information. Each driver drives along two assigned 
routes twice: the first drive is neutral or neutral driving and the 
drive is driving with assigned distraction tasks. In this paper, we 
focus on the four driving signals obtained from the CAN-Bus 
information. These signals are sampled at 100 Hz. 

The remainder of this paper is organized as follows. Section 
2 describes the data analysis of long-term behavior and 



distracted driving compared to the non-distracted (neutral) 
driving. Section 3 is devoted to driver modeling based on GMM 
and HMM with applications on action classification, distraction 
detection, and driver identification. Section 4 concentrates on the 
accuracy of each GMM and HMM model. Finally, Section 5 
concludes the paper with a summary and directions for future 
work. 
 

2. DATA ANALYSIS 
 
The first step of utilizing a rich multimodal corpus is a well-
defined transcription protocol. Therefore, we designed a multi-
modal data transcription framework, and transcribed data based 
on driver activities (e.g., making a left turn, talking with 
assistant) according to the reference labels in Table 1. 

 
Table 1: Reference Transcription Protocol 

 
Tasks Start point End Point 

Code Description Data 
type Action Data 

type Action 

TL Turn Left S W D D>0 
TR Turn Right D W D D>0 

LR Lane Change 
Right Video A Video B 

LL Lane Change 
Left Video A Video B 

ST Stop S S=0 S S>0 

CT Call a voice 
portal Audio X Video Y 

CR Control Radio Audio X Video Y 

CW Control 
window Audio X Video Y 

TA Talk with an 
assistant Audio X Audio Y 

CM Common Task Audio X Video Y 

FR Free-style 
Driving · O.W · O.W 

 
A: When driver starts to glance at the rear mirror 
B: When vehicle becomes parallel to the lane. 
S: Vehicle speed 
D: Steering Degree 
W: When steering degree starts to increase 
X:  When instruction is given. 
Y:  When driver finishes action 
O.W: Otherwise 

 
In order to assess driver-behavior characteristics and to 

measure the correlation between driving behaviors, we used 
MATLAB to analyze the data and to generate comparison plots 
(both one-dimensional and two-dimensional plots). There are 
five activities considered as distraction tasks during driving: 
calling a voice portal, controlling radio, controlling the window, 
talking with an assistant, and performing some common Tasks. 
There are six long-term driving behaviors: Turn Left, Turn 
Right, Lane Change Right, Lane Change Left, Stop, and neutral 
driving. Figure 1 illustrates the four driving signals extracted 
from the CAN-Bus information: steering wheel degree, brake 
value, acceleration RPM, and vehicle speed.  
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Figure 1: Four Can-Bus signals 

 
First, we analyzed the characteristics of driver behavior 

under distraction and non-distraction (neutral). Figure 2 
compares vehicle speed of neutral driving and driving while 
interacting with a voice portal using the same vehicle route 
twice.  As we can see, when a driver drives in his neutral mode, 
the average vehicle speed is 69.91 km/h. The vehicle speed was 
decreased to 63.92 km/h when the driver used the speech-
interface system. We conjecture that the driver slowed down the 
vehicle speed to increase his safety margin.   
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Figure 2: Comparison of vehicle speed for neutral driving 

and under distraction  
 

 Similarly, Table 2 shows the comparison between neutral 
driving and distracted driving from the same route. The first 
distraction is controlling and tuning a radio, and the second 
distraction is interacting with a voice portal. The average speed 
varies among drivers, with the average speed of 41.08 km/h 
during neutral driving. The average speed was 34.5 km/h when 
controlling a radio as the distraction.  On another route, the 
average vehicle speed of distracted driving, calling a voice portal 
was 64.55 km/h, compared to the average vehicle speed of 68.52 
km/h under neutral driving. Therefore, we note that the average 
vehicle speed of distracted driving is lower than neutral driving 
for the same route and driving conditions. 
 



Table 2: Average Speed between Neutral driving and 
Distraction Driving (Control radio and Call a voice portal) 

Driver 1 2 3 4 
Total 

averag
e 

Neutral 
driving[km/h] 37.14 32.47 44.79 49.91 41.08 

Control 
radio[km/h] 24.49 28.78 35.94 48.78 34.50 

Neutral 
driving[km/h] 69.91 67.59 62.70 73.87 68.52 

Call a voice 
portal [km/h] 63.91 68.11 62.69 63.48 64.55 

 
For example, the steering degree is not smooth and stable, 

when the driver calls a voice portal, compared to neutral driving. 
The average speed is slower when he/she drives with some 
distraction. To compare distraction caused by cell-phone calling 
while driving, we generated several plots of CAN-Bus signals, 
as well as two-dimensional scatter plots. 

Figure 3 shows plots of steering degree of neutral driving 
and distracted driving (having conversation with passenger). 
Even though both data sets were collected along the same route, 
the driver maneuvered the steering wheel frequently while 
talking with the passenger. The neutralized short-term variance 
of the steering degree under neutral driving is 0.27, and 0.82 
under distracted driving (with analyzed window length of 300 
samples). This significant difference of neutralized variance of 
steering degree confirmed that the driver had to correct minor 
lapses in steering degree to maintain lane occupancy. Similarly, 
Figure 4 compared the steering degree of neutral driving and 
driving while controlling a radio. The neutralized short-term 
variance of steering degree under neutral driving condition is 
1.21, compared to 1.69 for distracted driving condition.  
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Figure 3: Steering degree versus time for Neutral and 

Distracted driving (conversation with passenger) along same 
route conditions. 
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Figure 4: Steering Degree versus time for Neutral and 
Distracted driving (controlling radio) along same route 

conditions. 
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Figure 5: Comparison between Neutral and Distracted 
driving using vehicle speed and steering wheel angle. 

 
Figure 5 shows the scatter plot correlation of steering wheel 

angle and vehicle speed. If a driver cannot focus on driving, a 
wider range of steering angle would occur due to slight 
corrections in vehicle lateral position, as well as speed reduction 
to make up for the reduced attention to the road. Under neutral 
driving condition, the average vehicle speed was 48 km/h and 
under distraction talk (driver controlled the windows while 
driving), the average vehicle speed was 41 km/h.  Also, the 
average steering wheel angle for neutral driving was -9o, and 
was -11o for the task of controlling the window. Moreover, the 
neutralized short-term variance of steering wheel angle for 
neutral driving is 9.79, and increases to 33.41 for distracted 
driving (controlling window). The neutralized short-term 
variance of vehicle speed for neutral driving is 12.38 and for 
controlling the window is 6.56.  These values show that the 
driver maneuvered the steering wheel more frequently, but he 
did not change the vehicle speed as much as neutral driving 
while controlling the window. The correlation coefficient 
between steering degree and vehicle speed under neutral driving 



is 0.3044, compared to 0.043 under distracted driving when 
controlling the window. 

Figure 6 shows the dynamic movement of steering-wheel 
degree for right turning and left turning at the same corners from 
different drivers.  
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Figure 6: Steering-wheel degree of right turning and left 
turning from different drivers and their average plots. 

 
The drivers’ own characteristics can be classified based on 

the relationship between vehicle speed and steering wheel angle. 
In Figure 7, driving behavior signals of three drivers (vehicle 
speed and steering wheel degree) were mapped onto two-
dimensional plots. Both plots from the neutral driving (left) and 
distracted driving (right) of each driver have analogous patterns. 
In this figure, the negative value of steering degree represents 
clock-wise maneuver, and the mesh at the right-side of the 
column in each plot represents the characteristic of each driver 
while turning left. The patterns of mesh at the left-side of the 
column show that driver1 and 2 changed their steering wheel 
degree faster than driver 3 while turning right. The magnitude of 
the column in the middle of the plots represents the maximum 
vehicle speed while driving on the straight road. The longest 
column in the second plot means that driver 2 drove fastest 
among three drivers. 

 
3. CLASSIFICATION FRAMEWORKS 

 
In this section, we discuss our driver behavior modeling and 
classification applications. Here, we employ two statistical 
modeling frameworks to model driver behavior. 
 
3.1 Hidden Markov Model (HMM) is a statistical model in 

which the system being modeled is assumed to be a Markov 
process with unknown parameters, and the challenge is to 
determine the hidden parameters from the observable 
parameters [5]. An HMM is capable of capture the dynamic 
movement of a time series. 

 
3.2 Gaussian Mixture Model (GMM) is a parametric approach 

to density estimation [6]. Gaussian mixtures are known for 
their ability to generate arbitrarily shaped densities. GMMs 
are used to model driver characteristics. 
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Figure 7: Relationship between vehicle speed and steering-
wheel degree of 3 drivers (left: neutral, right: distracted). 

 
 
3.3 Experimental setup 
For driving action classification, six classes are considered: 
turning right (TR), turning left (TL), lane change right (LR), 
lane change left (LL), stop (ST) and free-style driving (FR). For 
training these models, the experiments were conducted with the 
various numbers of Gaussian components and states to achieve 
the optimal average accuracy. Here, 70% of each data set was 
used to train the models and the remaining 30% of the data was 
used in the evaluation stage.  

The next experiment is distraction detection. When we 
collected the driving data, there were two driving modes, one is 
the neutral driving, and other is driving with distraction tasks, 
such as calling on a cell-phone to interact with a voice portal 
(CT), controlling radio (CR), controlling window (CW), 
performing some common tasks (CM), and talking with assistant 
or passenger (TA). Two models were trained with the various 
numbers of Gaussian components and numbers of states. When 
we generated a model for distracted driving, the original data 
sizes varied widely. To make a more accurate model, we 
segmented the signals of neutral driving into smaller portions of 
5 seconds and 10 seconds (close to the period of the other 
activities). Again, the training models are generated from a 
random selection of 70% of the neutral driving and distraction 
signals. The remaining data from these signals is used to test the 
models.   

For driver identification, driving signals are also used to 
generate models to identify drivers. From analysis of the signals 
of each driver show that both neutral driving and distracted 
driving of each driver have its own characteristics, we did not 
consider the differences between neutral driving and distracted 
driving to classify driver identity. Seventy percent of driving 
signals was used for training driver models; the remaining was 
used for test models. Total six driver models were trained. The 
number of Gaussian components and states were optimized to 
achieve the models that provide the highest accuracy. 
 



4. EXPERIMENTAL RESULTS 
 

4.1 Action classification 
We generated the action (activity) models by using four-
dimensional CAN-Bus signals, based on the HMM topology. 
There are six action models: turning right (TR), turning left 
(TL), lane change right (LR), lane change left (LL), stop (ST) 
and neutral driving (FR). Figure 8 shows the accuracy of action 
classification with different numbers of Gaussian components 
and HMM states. The optimal point is at two Gaussian 
components and eight states. The average accuracy is 69% 
(chance is 16.67%). Table 3 shows classification accuracy for 
each action class. 
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Figure 8: Average accuracy of driver Action Classification 

across 6 Driver Actions 

 
Table 3: Accuracy of Driver Action Classification 

Activities TR TL LR LL ST FR 
Accuracy 

(%) 93.54 100 48 44.44 83.33 45.62 

 
4.2 Distraction Detection 
Table 4 shows the EER (Equal Error Rate) of distraction 
detection task with HMM parameters of 3 Gaussian mixtures 
and five states (M3S5), four Gaussian mixtures and six states 
(M4S6), and six Gaussian mixtures and six states (M6S6). These 
numbers involve a tradeoff between two error types: missed 
detection and false alarms probabilities. Figure 9 illustrates two 
example DET (Detection Error Tradeoff) curves [7]. For the 
DET curve, the closer to the bottom left corner represents better 
system performance (less errors). From these results, we can 
conclude that 10 seconds data has better performance than the 5 
seconds data. That is, the longer driving data test shows more 
consistent characteristics of distraction. 

 

Table 4: Equal Error Rate of Distraction Detection Model 

 M3S5 M4S6 M6S6 
5 sec.       

Model (%) 41.76 39.17 44.59 

10 sec.     
Model (%) 37.59 36.35 34.29 
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Figure 9: DET Curves for a distraction detection                    

(5 sec. driving duration and 10 sec. driving duration) 

 
4.3 Driver Identification 
Figure 10 illustrates the accuracy of HMM model for both 
segmented signals, 5 and 10 seconds. The first plot shows the 
accuracy of the GMM in which the number of states is 1. When 
the number of Gaussian components is 45 and the number of 
states is 1 (in particular, GMM with 45 mixtures), the models 
yield the best performance for both driving durations (29.50% 
for 5 seconds and 29.48% for 10 seconds). The second plot 
shows the accuracy of the most efficient HMM (HMM with 3 
states). When the number of Gaussian components is 7, the 
models show the best performance (31.45% for 5 seconds and 
29.16% for 10 seconds). In the third plot, we fixed the number of 
Gaussian components and draw the accuracy while changing the 
number of states. It shows the trajectory of accuracy depending 



on the number of states. Obviously, HMM using 3 states yields 
the best performance for both driving durations. 
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Figure 10: Accuracy of driver identification 
 
 

5. CONCLUSION 
 
In this paper, driver action classification, driver distraction 
detection, and driver identification were studied using in-vehicle 
CAN-Bus signals with both GMM and HMM frameworks. We 
achieved 69% accuracy for action classification, and 25% 
accuracy for driver identification. Distraction detection had 35% 
EER. Data analysis showed that the average vehicle speed is 
lower under distracted driving, compared to neutral driving. 
Also distracted driving has a wider neutralized short-term 
variance than non-distracted (neutral) driving. Our preliminary 
studies showed some promising results using CAN-Bus signals 
to model driver behavior, but further studies could explore the 
consistency for each distraction task, as well as variability for 
individual subjects. 
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