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ABSTRACT 
 
This paper presents research activities of UTDrive: the smart 
vehicle project. The objectives of the UTDrive project are to 
collect and research rich multi-modal data recorded in actual car 
environments for analyzing and modeling driver behavior. The 
models of driver behavior under normal and distracted driving 
conditions can be used to create improved human-machine 
interactive systems and reduce vehicle accidents on the road. 
The UTDrive corpus consists of audio, video, brake/gas pedal 
pressure, head distance, GPS information (e.g., position, 
velocity), and CAN-Bus information (e.g., steering-wheel angle, 
brake position, throttle position, and vehicle speed). Here, we 
describe our in-vehicle data collection framework, data 
collection protocol, dialog and secondary task demands, data 
analysis, and preliminary experimental results. Finally, we 
discuss our proposed multi-layer data transcription procedure for 
in-vehicle data collection and future research directions. 

 

1. INTRODUCTION 
 
There has been significant interest in development of effective 
human-machine interactive systems in diverse environmental 
conditions. Voice based route navigation, entertainment control, 
and information access (voice mail, etc.) represent domains for 
voice dialog systems in the car environment. The in-vehicle 
speech-based interactive systems allow the driver to stay focused 
on the road. Several studies [2, 5] have shown that drivers can 
achieve better and safer driving performance while using speech 
interactive systems to operate an in-vehicle system compared to 
manual interfaces. Although better interfaces can be 
incorporated, operating a speech interactive system will still 
divert a driver's attention from the primary driving task with 
varying degrees of distraction. Ideally, drivers should pay 
primary attention to driving versus managing other secondary 
tasks that are not immediately relevant to the primary driving 
task. With current life styles and advancement for in-vehicle 
technology, it is inevitable that drivers will perform secondary 
tasks, or operate driver assistance and entertainment systems 
while driving. In general, the common tasks such as operating 
the speech interactive systems in a driving environment include 
cell-phone dialing, navigation/destination interaction, e-mail 
processing, music retrieval, and generic command and control 
for in-vehicle telematics system. If such secondary tasks or 
distractions fall within the limit of the amount of spare cognitive 
load for the driver, he or she can still focus on driving. 

Therefore, the design of safe speech interactive systems for in-
vehicle environments should take into account factors from the 
driver's cognitive capacity, driving skills, and their degree of 
proficiency for the cognitive application load. With knowledge 
of the human factors, an effective driver behavior model with 
real-time driving signals can be integrated into a smart vehicle to 
support or control driver assistance systems to manage driver 
distractions (e.g., suspend or adapt applications in a situation of 
heavy driving workload, provide alert if the distraction level is 
higher than a safety threshold).  

Driving is a multitasking activity that comprises discrete 
and continuous nature of drivers’ control actions to manage 
various driving and non-driving tasks. Over the past several 
decades, modeling driver behavior has drawn much research 
attention. A number of studies have shown that driver behavior 
can be modeled and anticipated by the patterns of driver’s 
control of steering angle, steering velocity, car velocity, and car 
acceleration [10], as well as driver identity itself [4, 13]. 
Miyajima, et al. [9] efficiently employed spectral-based features 
of the raw pedal pressure signal with Gaussian mixture model 
(GMM) framework to model driver characteristics. Building 
effective driver behavior recognition framework requires a 
thorough understanding of human behavior and the construction 
of a mathematical model capable of both explaining and 
predicting the drivers' behavioral characteristics. In recent 
studies, several researchers have defined different performance 
measures to understand driving characteristics and to evaluate 
their studies. Such measures include driving performance, driver 
behavior, task performance, etc. Driving performance measures 
consist of driver inputs to the vehicle or measures of how well 
the vehicle was driven along its intended path [1]. Driving 
performance measures can be defined by longitudinal velocity 
and acceleration, standard deviation of steering-wheel angle and 
its velocity, standard deviation of the vehicle's lateral position 
(lane keeping), mean following distance (or head distance), 
response time to brake, etc. Driver behavior measures can be 
defined by glance time, number of glances, awareness of drivers, 
etc. Task performance measures can be defined by the time to 
complete a task and the quality of the completed task (e.g., do 
drivers acquire information they need from cell-phone calling). 
Therefore, multi-modal data acquisition is very important to 
these studies. 

UTDrive is part of a NEDO-supported international 
collaboration between universities in Japan, Italy, Singapore, 
Turkey, and USA. The UTDrive (USA) project has been 
designed specifically to:  

a)  Collect rich multi-modal data recorded in a car 
environment (i.e., audio,  video, gas/brake pedal pressures, 
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following distance, GPS information, and CAN-Bus information 
including vehicle speed, steering degree, engine speed, and 
brake position), 

b)  Assess the effect of speech interactive system on driver 
behavior, 

c)  Formulate better algorithms to increase accuracy for in-
vehicle ASR systems, 

d)  Design dialog management which is capable of adapting 
itself to support a driver's cognitive capacity, and 

e)  Develop a framework for smart inter-vehicle 
communications. 

The results of this project will help to develop a framework 
for building effective models of driver behavior and driver-to-
machine interactions for safe driving. This paper is organized as 
follows. Section 2 discusses the details of the multimodal data 
acquisition in actual car driving environment. Section 3 
describes data collection protocol of the UTDrive project. 
Section 4 is devoted to the driving signals. Driver distraction is 
discussed in Section 5. Section 6 concentrates on driver behavior 
modeling. Section 7 discusses the multilayer transcription for in-
vehicle corpus. Finally, Section 8 concludes the paper with 
future work. 
 

2. MULTIMODAL DATA ACQUISITION 
 
In this section, we describe an overview of the hardware setup 
for multimodal data acquisition system.  
 
2.1. Audio 
 
A custom designed five microphone array with omni-directional 
Knowles microphones was constructed on top of the windshield 
next to the sunlight visors to capture audio signals inside the 
vehicle. Each microphone was mounted in a small movable box 
individually attached to an optical rail, as show in Fig. 1. This 
particular design allows the spacing between each microphone 
component to be adjustable into various scales (e.g., linear, 
logarithmic, etc.) across the width of the windshield. In addition, 
the driver speech signal is also captured by a close-talk 
microphone and throat microphone. This microphone provides a 
reference for the speaker (driver), and allows the driver to move 
their head freely while driving the data-collection vehicle.    
 

 
Figure 1: Custom-designed adjustable-spaced microphone 

array 

Since there are different kinds of noise (e.g., A/C, engine, 
turn signals, passing vehicles) present in the driving 
environment, the microphone array configuration allows us to 
apply beam-forming algorithms to enhance the quality of input 
speech signals [7, 14].  Another aspect present in the car 

environment is a variety of background noises that effect the 
quality of the input acoustic signal for the speech interface. 
More importantly, drivers have to modify their vocal effort to 
overcome perceived noise levels, namely the Lombard effect [8]. 
Such effects on speech production (e.g., speech under stress) can 
degrade the performance of automatic speech recognition (ASR) 
system more than the ambient noise itself [6]. At a higher level, 
interacting with an ASR system when focused on driving may 
result in a speaker missing audio prompts, using incomplete 
grammar, adding extra pauses or fillers, or extended time delays 
in a dialog system. Desirable dialog management should be able 
to employ multi-modal information to handle errors and adapt its 
context depending on the driving situations. 
 
2.2. Video 
 
Two Firewire cameras are used to capture visual information of 
driver’s face region and front-view of the vehicle, as show in 
Fig. 2.  Visual cues of driver characteristics such as head 
movement, mouth shape, and eye glance are essential for 
studying driver behavior. In addition, several studies have shown 
that combining audio and video information from the driver can 
improve ASR accuracy for low SNR speech [3, 15]. Integrating 
both visual and audio content allows us to reject unintended 
speech prior to speech recognition and significantly improve in-
vehicle human-machine dialog system performance [15] (e.g., 
determining the movement of the driver’s mouth, body, and head 
positions). 
 
2.3. CAN-Bus Information 
 
As automotive electronics advance and government required 
standards evolve, control devices that meet these requirements 
have been embracing modern vehicle design, resulting in the 
deployment of a number of electronic control systems. The 
Controller Area Network (CAN) is a serial, asynchronous, multi-
master communications protocol suited for networking vehicle’s 
electronic control systems, sensors, and actuators. The CAN-Bus 
signal contains real-time vehicle information in the form of 
messages integrating many modules, which interact with the 
environment and process high and low speed information. In the 
UTDrive project, we obtain the CAN signals from the OBD-2 
port through the 16 points J1962. Information captured from 
CAN while the driver is operating the vehicle (e.g., steering 
wheel angle, brake position, engine speed, and vehicle) are 
desirable in studying driver behavior.  

Microphone 

 
2.4. Transducers and Extensive Components 
 
In addition, the following transducers and sensors are included 
in the UTDrive framework: 

• Brake and gas pedal pressure sensors: provide continuous 
measurement of pressure the driver puts on the pedals. 

• Distance sensor: provides the following distance to the 
next vehicle. 

• GPS: provides standard time and position of the vehicle. 
• Hands-free car kit: provides safety during data collection 

and allows audio signals from both channels to be recorded. 
• Biometrics: heart-rate and blood pressure measurement. 

2.5. Data Acquisition Unit (DAC) 



 
The key component of effective multimodal data collection is 
synchronization of the data. In our data collection, we use a fully 
integrated commercial data acquisition unit. With a very high 
sampling rate of 100 MHz, the DAC is capable of synchronously 
recording multi-range input data (i.e., 16 analog inputs, 2 CAN-
Bus interfaces, 8 digital inputs, 2 encoders, and 2 video 
cameras), and yet allows acquisition rate for each input channel 
to be set individually. The DAC can also export all recording 
data as a video clip in one output screen, or individual data in its 
proper format with synchronous time stamps. The output video 
stream can be encoded to reduce its size, and then transcribed 
and segmented with an annotation tool. Fig. 2 shows a snapshot 
of a recording video clip with all data displayed on the screen 
(e.g., audio channels on top, two camera screens in the middle, 
sensors and CAN-Bus information on the left bottom, and GPS 
information on the right bottom). 

 
Figure. 3: UTDrive vehicle and its components. 

 
In order to avoid signal interference, power cables and 

signal cables were wired separately on both sides of the car. The 
data acquisition unit is mounted on a customized platform on the 
backseat behind the driver. The power inverter and supplier units 
are designed to be housed in the trunk space. Fig. 3 shows the 
UTDrive data-collection vehicle and its components. 

 
3. DATA COLLECTION PROTOCOL 

 
For data collection protocol, each participant drives the 

UTDrive vehicle using two different routes in the neighborhood 
areas of Richardson-Dallas, TX; the first route represents a 
residential area environment and the second route represents a 
business-district environment. Each route takes 10-15 minutes. 
The participant drives the vehicle following each route twice; 
with the first being neutral driving and second is driving and 
performing secondary tasks. Due to safety concerns, the 
assigned tasks are common tasks with mild to moderate degrees 
of cognitive load (e.g., interacting with commercial automatic 
speech recognition (ASR) dialog system, reading signs on the 
street, tuning radio, having a conversation with the passenger, 
reporting activities, changing lanes, etc.)  The participants are 
encouraged to drive the vehicle up to three sessions with at least 
one week separation between sessions, in order to achieve 

session-to-session variability. Figure 4 shows a map of the 
driving route and the assigned tasks. The assigned tasks are 
performed along each individual street and are alternated for 
three driving sessions. For example, a driver is requested to 
interact with a commercial voice portal while driving on one leg 
of the entire first session route.  For the second and the third 
sessions, the driver is asked to interact with another commercial 
voice portal and have conversation with passenger while driving 
along the same leg of the entire route, respectively.  This will 
allow us to compare different distraction levels with constant 
route driving conditions. 

  

 
 

Figure 4: A driving routes and the assigned tasks. 
 

4. DRIVING SIGNALS 
 

A variety of observable driving signals and sensory data 
have been applied to analyze and characterize driver behavior; 
for example, brake and gas pedal pressures, steering-wheel 
degree, velocity of vehicle, velocity of vehicle in front, 
acceleration, engine speed, lateral position, following distance, 
yaw angle (the angle between a vehicle’s heading and a 
reference heading) are several under evaluation dimension.   

Figure 2: A Snapshot from a recording screen. 
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Our preliminary study focuses on four driving signals 
extracted from the CAN-Bus information: acceleration (RPM), 
brake position, steering wheel angle, and vehicle speed. Fig. 5 
shows the plots, in normalized scales, of these four driving 
signals for 5 minutes of driving. Positive slope of steering degree 
plot represents counter-clockwise steering movement, while 
negative slope represents clockwise steering maneuver.   
 

 
Figure. 5: Vehicle CAN-Bus signals. 

 
5. DRIVER DISTRACTION 

 
Driver awareness has been a major safety concern since the 
invention of the automobile. According to the National Highway 
Traffic Safety Administration (NHTSA), there are four distinct 
types of driver distraction: visual, auditory, bio-mechanical 
(physical), and cognitive distractions. Although these four 
modes of distraction are separately classified, they are not 
mutually exclusive. For example, operating a mobile phone 
while driving may include all four types of driver distraction: 
dialing the phone (physical distraction), looking at the phone 
(visual distraction), holding a conversation (auditory 
distraction), and focusing on the conversation topic (cognitive 
distraction) [11]. Common sources of driver distraction are 
eating or drinking, focusing on the other objects off the road, 
adjusting radio, talking with passengers, moving the other 
objects, dialing and talking on a cell-phone, and others.    

One approach to distraction detection is based on 
measurements of driving performance including steering wheel 
movement, lateral lane position, longitudinal speed, lateral and 
longitudinal of acceleration and velocity, following distance, 
vehicle braking, and response time. Under distracted driving, 
drivers are likely to lose their smooth driving patterns (e.g., slow 
down or speed up vehicle speed, make excessive steering-wheel 
maneuver for lane keeping).  Figure 6 shows plots of (a) vehicle 
speed and (b) normalized steering-wheel angle of a driver on the 
same route twice (under very light traffic). The neutral driving 
(do nothing) is shown on the top of each plot, and the driving 
while interacting with a spoken dialog system is shown on the 
bottom. The vertical line in plot (b) illustrates the sharp 
maneuver of steering wheel between left and right. As we can 

see, the driver maintains a smoother driving pattern under the 
neutral condition with a secondary distraction task.. 

 

 
(a) Vehicle Speed 

 
(b) Steering-wheel Angle 

Figure 6: Comparison of neutral and distracted driving of a 
driver drives on the same road (under very light traffic). 

 
6. DRIVER BEHAVIOR MODELING 

 
Driver behavior consists of lower-level components (e.g., eye 
movement and steering degree during lane keeping and lane 
changing) and higher-level cognitive components (e.g., 
maintaining situation awareness, determining strategies for 
navigation, managing the other tasks, etc.) [12]. Therefore, 
effectively modeling driver behavior needs multidisciplinary 
knowledge of signal processing, control theory, information 
theory, cognitive psychology, physiology, and machine learning.  

A driver behavior model can be developed to 
characterize different aspects of the driving tasks.  For 
example: 

• Action Classification/Prediction: Driver behavior model 
can be used to predict and categorize driver long-term behaviors 
such as turning, lane changing, stopping, and normal driving.  



• Driver Verification/Identification: The goal here would 
be to recognize the driver by their driving behavior 
characteristics. 

• Distraction Detection: The objective here is to identify 
whether the driver is under distraction due to performance of 
secondary tasks. 
 

7. TRANSCRIPTION CONVENTION 
 
One of the major challenges facing our efforts on utilizing rich 
multimodal data is a unified transcription protocol. Such 
protocols do not exist in the community. Multi-layer 
transcription is necessary for this study. For example: 

• Audio: different types of background noise inside and 
outside the vehicle, passengers’ speech, radio and music, ring 
tone, and other audio noise types. 

• Driving Environment: type of roads (number of lanes, 
curve or straight, highway or local, speed limit), traffic (traffic 
situation, traffic light, surrounding vehicles), road condition, etc. 

• Driver Activity: look away from the road, talk to 
passengers, dial a phone, talk to a phone, look at rear mirror, 
look at control panel, sleepy, day-dreaming, etc. 

• Vehicle Mode: left or right turn, left or right lane change, 
U-turn, stop and go, stop, etc.  

The ability to formulate an effective transcription 
convention is critical in driving future directions for smart 
vehicle research. The transcription convention used will lead to 
better algorithm development which reduces cognitive loads on 
drivers for smart vehicle systems. 

 
8. CONCLUSIONS AND FUTURE WORK 

 
This paper described research activities of the UTDrive project 
and vehicle setup for real-time multimodal data acquisition in an 
actual driving environment. Example profiles using analysis of 
CAN-Bus information illustrates the range of research possible 
with the UTDrive corpus. However, robust and reliable driver-
behavior modeling systems need to employ the other modalities 
of data such as video and driver’s biometric information to better 
integrate the driver and system designs of the future. 
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