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ABSTRACT 
 
In acoustic imaging systems, it is crucial to distinguish 
artifacts from real objects in images obtained from a scene 
of interest in order to segment and classify obstacles, say for 
a reverse parking car. In this application, subspace methods 
are not applicable because of the spatial spread of the 
objects. This paper analyzes the performance of several 
beamforming algorithms. We assess the behavior of the 
algorithms based on real data measurements and measure 
the performance using a similarity index and power 
distribution. 
 

Index Terms— acoustic imaging, beamforming, array 
signal processing, autonomous navigation 
 

1. INTRODUCTION 
 
Acoustic imaging has been successfully used in such 
different fields as sonar, medical imaging and material 
testing. In order to create images of a scene of interest, one 
has to record scattering signals either using a lens system or 
an array of acoustic sensors (see e.g. [1]). While most 
applications of acoustic imaging systems operate in media 
such as dense materials (human tissue, water or metal), 
systems working in air can be employed in applications such 
as autonomous navigation and scene reconstruction for 
example for object detection and classification in a reverse 
parking scenario, pedestrian detection for active safety 
systems, to mention a few. 
In array systems, signal processing crucially determines the 
nature of the created images and thereafter the overall 
system performance. Albeit the existence of high-resolution 
subspace algorithms, these methods can not be applied in 
situations where the objects have a non-negligible spatial 
spread. This is due to the fact that the sources cannot be 
modeled as point sources and therefore, eigenvalues do not 
match single sources. Although some work has been done to 
extend these methods to spatially spread sources for 

Direction-Of-Arrival (DOA) estimation, the focus is merely 
on an increase of estimation accuracy [2].  
It is not possible to apply these extensions to source 
imaging. Hence, acoustic imaging systems that have no 
prior knowledge about the objects to be imaged have to use 
beamforming algorithms to create the spatial spectrum. In 
this paper, the effect of different beamforming algorithms is 
analyzed in the context of acoustic imaging systems that 
employ ultrasound in air.  
We investigate the effects of different beamforming 
algorithms on the created images of the scene and compare 
these images in terms of artifacts and object visibility. A 
presentation of the used imaging system is given in Section 
3, followed by the description of quality criteria and the 
used figures of merit in Section 4. A similarity index is 
described which allows to evaluate the performance of the 
algorithms based on experiments described in Section 5. 
Finally, results are discussed and conclusions drawn. 
 

3. THE IMAGING SYSTEM 
 
We recently presented an acoustic imaging system that uses 
a single ultrasound transmitter and a 2D receiver array to 
generate 3D images of the region of interest in a scene of a 
mobile system [3]. The scene to be analyzed is illuminated 
by the transmitter, emitting a short narrow-band acoustic 
pulse with center-frequency fc = 50kHz. This pulse is 
reflected by objects present in the scene and backscattering 
is recorded by the 2D array. Echoes are identified and a 
spatial spectrum image is generated for each echo segment. 
Based on a Time-Of-Flight (TOF) estimation, the images 
can be translated into a 3D map (see Figure 1). 
As the system has to operate in an a priori unknown 
environment, subspace-based methods cannot be employed. 
Therefore, a 2D Capon beamformer was used to scan a two-
dimensional grid in the (θ,φ )-space (see e.g. [5]). The 
intensity of a pixel in the images is therefore proportional to 
the power at each point in this grid. 
 



 
4. QUALITY CRITERIA & THE SSIM 

 
The images we obtain by the system described above form 
the basis for object detection and classification. It is 
therefore crucial to create images which represent the 
physical scene in a way that allows for clear discrimination 
of objects from artifacts. More specifically, the beam pattern 
should not allow for artefacts due to sidelobes while the 
reflections of the objects should be represented distinctively. 
As the strength of ultrasound echoes varies greatly with 
range, shape and surface of the objects, any variations of 
sensitivity in the beam patterns over the whole search space 
are undesirable. While these criteria are conflicting, the 
question remains how the beamforming algorithms fulfill 
those and what differences are present in the resulting 
images. 
We compare the beamforming algorithms by the Structured 
Similarity Index (SSIM) [4]. It is a similarity measure which 
was introduced in the image processing community as a 
means of comparing images based on structural information. 
Additionally to the single quantity of the index, a map 
showing local similarities between two images can be 
calculated. Similarity is measured by statistics based on 
luminance and contrast. As a third component, the structural 
information of the images is compared by measure similar 
to the correlation coefficient, based on pivoted statistics for 
luminance and contrast. 
The index provides both global and local information about 
the similarity of two images. In our application, we compare 
the obtained, normalized images to a perfect binary 
reference image. In addition to the SSIM, we also compute 
the variance of the power distribution in the object region to 
compare how power is received from a single surface. The 
average power per pixel present in the non-object region is 

measured to determine the overall strength of the artefacts in 
the images. 

 
5. EXPERIMENTS 

 
The experiments in this section have been conducted in an 
acoustic laboratory. To exclude effects of the array 
geometry on the image, all objects have been recorded with 
a 20x20-element array. All images were processed using a 
grid resolution of 1° in both dimensions and are displayed in 
a logarithmic scaling. 

Figure 1: Flowchart of the imaging system 

 
5.1 Rough surface structure - Continuous response 

 
In this experiment, a circular pole with diameter 
d = 0.185 m was placed in front of the array. The surface of 
the object shows a rough structure in the dimension of λ , 
such that the scattering on its surface is highly affected. As 
can be seen in Figures 2 and 3, the created images show a 
continuous response over the whole surface, independent of 
the used beamformer.  However, the exact distribution of 
power seen by the array is determined by the beam pattern 
and therefore the used beamforming algorithm. Artifacts in 
the images mainly depend on the side lobe structure of the 
beam pattern. In Figure 2, Capon’s beamformer received a 
very constant power level from the whole surface of the pole 
which fronts the array. Due to its adaptive character, side 
lobe effects are minimized such that the object is clearly 
visible whereas the rest of the images only contain artifacts 
that are more than 10dB weaker. For the same object 
Bartlett’s beamformer [5] shows peaks on the same region, 
but the response is not as constant as for Capon’s 
beamformer. There are clearly two peaks visible at both 
ends of the pole along  the θ -dimension. 



 

 
The above results can be explained by the peak side lobe of 
the non-adaptive beam pattern of the algorithm. The side 
lobe effect is also more clearly visible than for Capon’s 
beamformer in non-object regions. Artifacts are stronger 
because a larger amount of power reflected from the object 
is captured by side lobes when looking in regions where no 
object is actually present. 
In Table 1, the effects in the images are summarized. While 
the SSIM index is on the same level in the object region  

( SSIMO ) for both algorithms, Bartlett’s beamformer 
performs worse in the non-object region ( SSIMNO ). 
Average power per pixel in the object region (σO

2 ) is 
slightly less for Capon’s beamformer than for Bartlett’s, 
whereas the variance of power is significantly less in that 
region ( ˜ σ O

2 ). However, comparing overall power in the 
non-object region (σ NO

2 ), the Bartlett beamformer performs 
much better. 
 
 SSIMO SSIMNO  σO

2  ˜ σ O
2  σ NO

2  

Bartlett 0.8886 0.0268 0.1987 1.3e-7 0.0460 

Capon 0.8852 0.0331 0.1773 9.3e-16 0.1247 
 

Figure 2: Image of a rough surface object obtained with 
Bartlett’s beamformer. 

 Table 1: Performance for continuous response. 
 

5.2  Smooth Surface – Specular Response 
 
We recorded data from another object with the same shape, 
but a smooth surface. This leads to a highly specular 
scattering at the object and therefore much lower peak  
amplitude in echoes. Additionally, echoes are received only 
from spots on the object. In such scenarios, the 
discrimination between artifacts and object echoes is much 
more difficult. As can be seen in Figures 3 and 4, the object 
is not visible by its whole surface anymore. Only a direct 
reflection, ground reflection and a reflection from the upper 
edge are visible. However, this is much better in the image 
based on Capon’s beamformer, as the side lobe effects are 
stronger than in the previous experiment. Considering the 
overall spatial spread from which energy is received is much 
smaller, it seems that Bartlett’s beamformer is incapable of 
sharply discriminating objects from background. As shown 
in Table 2, the SSIM is similar to the results from the 
previous experiment. However, due to the specular 
scattering, sharper peaks occur in the images and the 
average power per pixel is  

Figure 3: Image of a rough surface object obtained with 
Capon’s beamformer. 

 
SSIMO SSIMNO   ˜ σ O

2σO
2 σ NO

2   
-6Bartlett 0.8768 0.0371 0.0040 1.7e 0.0015 
-12Capon 0.8740 0.0425 0.0193 4.2e 0.00079

 
 Table 2: Performance for specular response. 
 



 

significantly smaller. The main difference is that Capon’s 
beamformer outperforms Bartlett’s even when considering 
power in the non-object region. Additionally, one can see 
that Capon’s beamformer clearly shows the upper edge of 
the object and also shows narrower peaks in general. The 
ground reflection aligned along the symmetry axis is clearly 
identifiable. 
 

6. CONCLUSION 
 
The created images show that Bartlett’s beamformer suffers 
from high side lobe effects that degrade the image quality 
and visibility of the object in both types of typical echo 
scattering scenes, whereas Capon’s beamformer remains an 
almost constant power receptor over the surface of the 
whole objects for continuous scattering.  For specular 

responses, Bartlett’s beamformer is not able to separate the 
object from the background very well and shows, due to its 
wider main lobe, generally broader peaks. 
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Figure 4: Image of a smooth surface object obtained 
with Capon’s beamformer. 
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