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ABSTRACT 

 
Recently, joint processing of throat and acoustic 
microphone recordings has been an attractive tool for 
robust speech processing. As the throat microphones 
record the acoustic sounds in the form of vibrations 
from skin attached sensors, they are more robust and 
highly correlated with the acoustic speech signal. We 
investigate the correlation of throat and acoustic 
microphone recordings. We propose a hidden 
Markov model (HMM) based structure to estimate 
acoustic speech features from throat speech features. 
The HMM based estimator will be used to estimate 
clean acoustic speech features from noisy throat and 
acoustic microphone recordings. Experimental 
results on acoustic speech feature estimation are 
provided. 
 

1. INTRODUCTION 
 
Since speech recognition is a natural interface for 
human-human communication, it becomes a natural 
source of interface for man-machine communication 
as well. However, speech recognition could not find 
a wide range of application areas, which is partly due 
to the robustness problems under varying 
environmental conditions. In the last two decades, 
many research articles address robustness issues in 
speech recognition under varying environmental 
conditions. Some of the mainstream robustness 
studies include speech enhancement, cepstral mean 
subtraction, model adaptation, etc, where these 
studies target to increase recognition performance 
under adverse conditions. Beside these uni-modal 
(speech only) approaches, recently multi-modal 
approaches try to benefit from robust modalities, 
such as use of lip movements with audio-visual 
speech recognition, to help speech recognition 
process. Multimodal approaches are beneficial when 
they include environment independent but speech 

correlated modalities. In this study, we as well 
propose a multimodal speech signal processing, 
which is targeting to investigate joint processing of 
throat- and acoustic-microphone (TA) recordings.  
The multimodal approaches become increasingly 
attractive in the last decade, and among these efforts 
the joint processing of TA recordings gained 
momentum in the last couple of years.  As the throat 
microphones record the acoustic sounds in the form 
of vibrations using throat and skin attached sensors, 
these recordings are more robust than acoustic 
microphone recordings to environmental conditions. 
However, they represent a lower bandwidth speech 
signal content compared to open-air acoustic 
recordings. Since the throat-microphone recordings 
are more robust and highly correlated with the 
acoustic speech signal, they become attractive 
candidates for robust speech recognition 
applications. In one of the early works using the 
voice vibrations recorded from throat in speech 
recognition applications, the throat and speech 
signals are linearly combined yielding a robust 
estimate of noisy speech signal [1]. The clean 
acoustic speech features are estimated using 
probabilistic optimum filter (POF) mapping in [2]. 
POF mapping [3] is a piecewise linear 
transformation applied to noisy feature space to 
estimate the clean feature space.  A device that 
combines a close-talk and a bone-conductive 
microphone is proposed by Microsoft research group 
[4-5] for speech detection using a moving-window 
histogram. Clean speech is estimated from the bone 
sensor signals [4]. The other approach [5] aims to 
learn the mapping from the bone sensor to the close-
talk microphone. In order to reconstruct the clean 
speech signals, the predicted speech from the bone 
sensor is fused with the noisy close talk speech. In 
another combined acoustic and throat microphone 
approach [6], the speech recorded from throat and 
acoustic channels is processed by parallel speech 
recognition systems and in the decision stage, 
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combination of these two sources yields a 
recognition more robust to background noise. 
     
In this study we investigate the correlation of TA 
recordings to build a mapping between throat and 
acoustic microphone vocal track parameters.  
 
 

2. ACOUSTIC-THROAT CORRELATION 
MODEL 

 

Throat microphone speech recordings are correlated 
with acoustic microphone signal. We focused on the 
analysis of this correlation over the source filter 
model. Let us represent the acoustic and throat 
microphone recordings by y(t) and b(t), and the 
corresponding source filter model as, 
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Here, e(t) is the excitation signal, h(t) is the vocal 
track filter impulse response, n(t) is the possible 
additive environmental noise and m(t) is the filter 
impulse response that forms the vocal tract in throat 
microphone recordings. We can obtain source Ei(w) 
and vocal tract filter Hi(w)  using source-filter 
analysis of TA recordings. Vocal tract filter, H2(w), 
that corresponds to throat microphone recordings is a 
low-pass version of the actual vocal tract, H(w), in 
this model. The throat microphone recordings are 
more robust to environmental noise than acoustic 
speech signals, hence they result a good 
representation of the low-pass nature of the actual 
vocal tract. We can obtain an estimate of the clean 
acoustic vocal track parameters from the noisy vocal 
track filter  and the throat microphone vocal 
track filter . Let us define this estimator as: 
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                                                        (3) 
Here, the function Φ(.,.) estimates clean vocal tract 
filter from the noisy vocal tract filter in the Δ 
neighborhood of the time instant tn. The 
synchronous clean TA recordings are processed with 
source filter analysis and line spectral pairs (LSPs), 
representing the vocal tract filter, are extracted 
synchronously for acoustic and throat microphones. 
The LSP parameters are calculated using a 16th order 
linear prediction filter over a window of size 20 

msec for every 10 msec frame. Let us define the LSP 
vector for i-th channel and k-th frame as, 

. The  represents the acoustic 
microphone filter models and , which are 
equal to each other for the clean environment 
recordings. Likewise,  vector represents the throat 
microphone filter model  for k-th window. 
Joint synchronous filter parameters can be 
represented as for k-th window.  

Ti
k

i
k

i
k

i
k lllL ],...,,[ 16,2,1,= 1

kL

)(1 wH )(wH

2
kL

)(2 wH

TT
k

T
kk LLL ],[ 21=

We consider two different approaches to estimate 
acoustic microphone filter models from throat 
microphone filter models.   The structure of the 
general estimator in (3) is modified to estimate the 
acoustic filter from the throat filter as follows: 
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This estimator is realized using two different 
approaches: the commonly used vector quantization 
approach and the Hidden Markov Model (HMM) 
based approach. The estimators and their 
performances are presented in the following sub-
sections. 
 

2.1. Vector Quantization Based Estimator 

A vector quantizer can be designed to jointly 
quantize the synchronous TA vocal track filter 
parameters. This quantizer can be used to estimate 
acoustic filter model from the throat filter model. Let 
the joint vector quantizer  is designed over the 

multi-stream filter parameter vectors with  
levels using the Linde-Buzo-Gray  (LBG) training. 
Hence each element of  quantizer is a 32 
dimensional joint acoustic and throat microphone 
filter parameters.  vector quantizer can be split 
into two conjugate vector quantizers,  and , 
which will represent acoustic and throat channels. 
We can quantize any throat filter parameter vector 

 for the k-th frame:   
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Here, 2
kL  is the quantized throat filter parameter 

vector and  is the index of the quantized vector. 
We can estimate the acoustic filter parameter vector 

2
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using the quantized throat filter parameter vector 2
kL  

and the conjugate vector quantizer  as: 1
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The estimation error between the estimate  and the 
original  parameter vectors can be computed as 
the logarithmic spectral distortion between  
and   as follows: 
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2.2. Hidden Markov Model Based Estimator  

An unsupervised classifier based on Hidden Markov 
model (HMM) is used to jointly segment temporal 
acoustic and throat microphone filter parameters.  
Joint temporal filter parameter patterns are used to 
form a correlation between acoustic and throat filter 
parameters. This temporal correlation is used to 
estimate acoustic filter parameters from throat filter 
parameters. 

 

 
Figure 1: Hidden Markov model based unsupervised 
classifier 

 
The multi-stream joint filter parameter vectors, , 
are used to train a parallel branch HMM structure. 
The parallel branch HMM structure, as shown in Fig. 
1, is used to perform unsupervised temporal 
clustering. In the parallel branch HMM structure, 
each branch corresponds to a temporal pattern. After 
the training process, the multi-stream HMM is split 
into acoustic only and throat only models. In the 
estimation process, the throat filter parameter 
sequence is temporally segmented using throat 

HMM, and in the resulting Viterbi state sequence the 
acoustic filter parameters are estimated as the mean 
vectors of the corresponding state probability 
distributions. In our simulations, each branch is 
selected as a 4-state left-to-right HMM, and the 
estimation performance is tested for varying number 
of branches and Gaussian mixtures.  

kL

 
3. EXPERIMENTAL RESULTS 

 
We build a synchronous acoustic and throat 
microphone database, which consist of 400 sentence 
recordings from a single subject under clean 
conditions. In our experimental studies we split this 
database into two equal parts to perform training and 
testing of the vector quantizer and HMM based 
estimators. 
 

 
Figure 2: The average log-spectral distortion 
performance of the vector quantizer based estimator 
on training and test sets 
 
The performance of the vector quantizer based 
estimator is analyzed for varying codebook sizes. 
The average log-spectral distortion values within 
train and test sets are given in Fig 2.  As expected, 
spectral distortion tends to decrease as the dimension 
of the vector quantizer increases for the training set. 
As for the test data, first the spectral distortion tends 
to decrease and then increase. It is observed that the 
best estimation is obtained with a 128 codebook size.  
 

A similar performance analysis is performed for the 
HMM based estimator. The average log-spectral 
distortion performances for varying number of 
classes with single and two Gaussian mixtures are 
given in Fig. 3 and 4, respectively. The best 
performances are obtained with 37-class HMM 
structure with single Gaussian mixture and 33-class 



HMM structure with two Gaussian mixtures. Note 
that, there is equivalence between vector quantizer 
and HMM based estimators in term of total number 
of clusters. The HMM based estimator has 4 states in 
a single branch and 37/33 total branches, on the 
other hand vector quantizer based estimator has 128 
codebooks. However, HMM based estimator 
captures the temporal changes, and with this 
property, it is observed that its log-spectral distortion 
is lower than the log-spectral distortion of the vector 
quantizer based estimator. 

 

 
Figure 3: The average log-spectral distortion 
performance of the HMM based estimator with 
single Gaussian mixture on training and test sets over 
varying number of classes 
 

 
Figure 4: The average log-spectral distortion 
performance of the HMM based estimator with two 
Gaussian mixtures on training and test sets over 
varying number of classes 
 
 

4. CONCLUSION 

In this paper, we focused on the analysis of the 
correlation between the throat and acoustic 
microphone recordings. Vector quantization and 
HMM based estimators are examined under clean 

environment recordings to estimate acoustic filter 
parameters from throat filter parameters. We 
observed that the average log-spectral distortion 
values for the HMM based estimator is better 
compared to the vector quantization based estimator. 
As future work, we will study the correlation 
analysis of the throat and acoustic microphone 
recordings under noisy environments.  
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