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ABSTRACT 

 
In previous works, in order to develop a robust man-machine 

interface based on speech for cars, Multi-Environment Model 
based LInear Normalization, MEMLIN, was presented and it 
was proved to be effective to compensate environment 
mismatch. MEMLIN is an empirical feature vector 
normalization technique which models clean and noisy spaces 
with Gaussian Mixture Models, GMMs; and the probability of 
the clean model Gaussian, given the noisy model one and the 
noisy feature vector (cross-probability model) is a critical point. 
In previous works the cross-probability model was approximated 
as time-independent in a training process. However, in this 
paper, an estimation based on GMM is considered for MEMLIN. 
Some experiments with SpeechDat Car and Aurora 2 databases 
were carried out in order to study the performance of the 
proposed estimation of the cross-probability model, obtaining 
important improvements: 75.53% and 62.49% of mean 
improvement in Word Error Rate, WER, for MEMLIN with 
SpeechDat Car and a reduced set of Aurora2 database, 
respectively (82.86% and 67.52% if time-independent cross-
probability model is applied). Although the behavior of the 
technique is satisfactory, using clean acoustic models in 
decoding produces a mismatch because the normalization is not 
perfect. So, retraining acoustic models in the normalized space is 
proposed, reaching 97.27% of mean improvement with 
SpeechDat Car database.  

 
1. INTRODUCTION 

 
Since cars are more and more considered as business offices, 

drivers need a safe way to communicate and interact with either 
other humans or machines. For safety reason, traditional visual 
and tactile man-machine interfaces, such as displays, buttons and 
knobs are not satisfactory but speech, as the most convenient 
and natural way of communication, is an appropriate and 
complementary solution which can reduce distractions. Hence, 
Automatic Speech Recognition (ASR) provides safety and 
comfort, and it is possible to follow the philosophy “Eyes on the 
road and hands on the steering wheel”, which should drive every 
in-vehicle system design. The problem of robust ASR in car 
environments has attracted much attention in the recent years 
and a new market demands for systems which allow the driver to 
control non critical devices or tasks like phone dialing, RDs-
tuner, air conditioner, satellite navigation systems, remote 
information services access, Web browsing... For this purpose, 

robustness in challenging car environment still needs to be 
improved.  

When training and testing acoustic conditions differ, the 
accuracy of ASR systems rapidly degrades. To compensate for 
this mismatch, robustness techniques have been developed along 
the following two main lines of research: acoustic model 
adaptation methods, and feature vector adaptation/normalization 
methods. Also, hybrid solutions, which are effective under 
certain conditions, can be generated by combining both kind of 
techniques, [1]. In general, acoustic model adaptation methods 
produce the best results [2] because they can model the 
uncertainty caused by the noise statistics. However, these 
methods require more data and computing time than do feature 
vector adaptation/normalization methods, which do not produce 
as good results but provide more on line solutions. So, finally, 
the choice of a robustness technique depends on the 
characteristics of the application in each situation.  

Feature vector adaptation/normalization methods fall into 
one of three main classes [3]: high-pass filtering, which contains 
very simple methods such Cepstral Mean Normalization, CMN, 
model-based techniques, which assumes a structural model of 
environmental degradation, and empirical compensation, which 
uses direct cepstral comparisons. In any case, and independently 
of the class, some algorithms assume a prior probability density 
function (pdf) for the estimation variable. In those cases, a 
Bayesian estimator can be used to estimate the clean feature 
vector. The most commonly used criterion is to minimize the 
Mean Square Error (MSE), and the optimal estimator for this 
criterion, Minimum Mean Square Error (MMSE), is the mean of 
the posterior pdf. Methods, such as Stereo-based Piecewise 
Linear Compensation for Environments (SPLICE) [4], or Multi-
Environment Model-based LInear Normalization (MEMLIN) [5] 
use the MMSE estimator to compute the estimated clean feature 
vector. 

Previous works [5] show that MEMLIN is effective to 
compensate the effects of dynamic and adverse car conditions. 
MEMLIN is an empirical feature vector normalization technique 
based on stereo data and the MMSE estimator. MEMLIN splits 
the noisy space into several basic environments and each of 
them and clean feature space are modelled using GMMs. 
Therefore, a bias vector transformation is associated with each 
pair of Gaussians from the clean and the noisy basic 
environment spaces. A critical point in MEMLIN is the 
estimation of the cross-probability model (the probability of the 
clean model Gaussian, given the noisy model one, and the noisy 
feature vector). In [5], a time-independent solution is considered 
to compute this probability, but this work focuses on a different 
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solution [6], which consists on modelling the noisy feature 
vectors associated to each pair of Gaussians from the clean and 
the noisy basic environment spaces with a GMM. Furthermore, 
adapting acoustic models to the normalized space is proposed to 
reduce the mismatch between compensated feature vectors and 
clean acoustic models.   

This paper is organized as follows: In Section 1, an 
overview of MEMLIN is detailed. In Section 2, some 
experiments are presented to show the importance of the 
cross-probability model estimation. The GMM based 
solution considered to compute the cross-probability 
model is explained in Section 3. The acoustic model 
retrained is explained in Section 4. The results with 
Spanish SpeechDat Car [7] and Aurora2 [8] databases are 
included in Section 5. Finally, the conclusions are 
presented in Section 6.  

 
2. MEMLIN OVERVIEW 

MEMLIN is an empirical feature vector normalization technique 
which uses stereo data in order to estimate the different 
compensation linear transformations in a previous training 
process. The clean feature space is modelled as a mixture of 
Gaussians. The noisy space is split into several basic acoustic 
environments and each one is modelled as a mixture of 
Gaussians. The linear transformations are estimated for all basic 
environments between a clean Gaussian and a noisy Gaussian. A 
scheme of MEMLIN can be shown in Fig. 1. 
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Fig. 1. Scheme of MEMLIN. 
 
2.1. MEMLIN approximations 
Clean feature vectors, , are modelled using GMM of C 
components 
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Noisy space is split into several basic environments, e, and the 
noisy feature vectors, , are modeled as a GMM  of C' 
components for each basic environment (assuming that all the 

basic environments are modelled with the same number of 
components) 
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Clean feature vectors can be approximated as a linear function, 
Ψ , of the noisy feature vector which depends on the basic 
environments, and the clean and noisy model Gaussians: 

, where  is the bias vector 

transformation between noisy and clean feature vectors for each 
pair of Gaussians,  and . 
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2.2. MEMLIN enhancement 
With those approximations, MEMLIN transforms the MMSE 
estimation expression, [ ]tyxEtx =ˆ , into 
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where ( )tyep  is the a posteriori probability of the basic 

environment; ( )eysp t
e
y ,  is the a posteriori probability of the 

noisy model Gaussian, , given the feature vector and the basic 

environment. To estimate those terms, expressions (e) and (4) 
are applied as described in [5]. Finally, the cross- probability 
model, 

e
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( )e
ytx seysp ,, , is the probability of the clean model 

Gaussian, , given the noisy feature vector, the basic 
environment and the noisy model Gaussian. The cross-
probability model can be estimated avoiding the time 
dependence given by the noisy feature vector in a training phase 
using stereo data for each basic environment 
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On the other hand, the bias vector transformation, , is also 

computed using the stereo data in the previous training phase 
[5]. 

e
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3. CROSS-PROBABILITY MODEL 

PERFORMANCE  
To study the performance of the cross-probability model in a 
qualitative way, the histograms and log-scattergrams between 



the first Mel Frequency Cepstral Coefficients (MFCCs) in non-
silence frames for different signals are depicted in Fig. 2. 

Figure 2.a, which represents the clean and noisy feature 
coefficients in real car conditions, shows the effects of car noise. 
The pdf of clean first MFCCs is clearly affected (Fig.2.a.1), and 
the uncertainty is increased (Fig.2.a.2). 

In Fig. 2.b and 2.c, clean and normalized coefficients with 
MEMLIN (128 Gaussians are considered to model the clean and 
basic environment spaces) are represented. The pdf of 
normalized first MFCCs has been approximated to the clean 
signal one (Fig. 2.b.1), and the uncertainty has been reduced 
(Fig. 2.b.2). The peak that appears in Fig. 2.b.1 is due to the 
transformation of noisy feature vectors towards the clean 
silence. 

Finally, Fig. 2.c represents clean and normalized coefficients 
with MEMLIN when the cross-probability model is computed 
with the corresponding clean feature vector as (7). 128 
Gaussians are used to model the different spaces. In this case the 
pdf of the normalized signal is almost the same that the clean 
one (Fig. 2.c.1) and the uncertainty is drastically reduced (Fig. 
2.c.2). Furthermore, the WER results in this case are almost the 
same that we would obtain with clean signal. These results 
verify the importance of a good estimation of the cross-
probability model in MEMLIN algorithm. 
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Fig. 2. Log-scattergrams and histograms between the first   MFCC in 
non-silence frames for different signals. The line in the log-scattergrams 
represents the function x=y. 
 

4. CROSS-PROBABILITY MODEL BASED ON 
GMM 

To improve the time-independent cross-probability model (6), 
we propose to model the noisy feature vectors associated to a 
pair of Gaussians (  and ) with a GMM of C'' components 

(assuming that the noisy feature vectors are modelled with the 
same number of Gaussianas for all pairs  and ). Since the 

estimation of the corresponding GMMs for each basic 
environment can be considered independent, they are not 
indexed to simplify the notation. Hence we present a model of 
the noisy feature vectors associated to the pair of Gaussians  

and  
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diagonal covariance matrix, and the a priori probability 
associated with  Gaussian of the cross-probability GMM 

associated with  and . To train these three parameters, the 

EM algorithm [9] is applied. 
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corresponding cross-probability GMM parameters ( ) =YX ,  
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Once the complete data pdf is obtained, the EM algorithm is 
applied iteratively in two steps: the Expectation (E) step, which 
estimates the expected values of the missing data, and the 
Maximization (M) step, which obtains the parameters of the 
cross-probability GMM using the estimated missing data. 
4.1. The E step 



To evaluate the E step, the function ( )( )kQ ΘΘ  is defined as  
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 includes all the unknown parameters of the cross-probability 
GMM we pretend to estimate. So, 
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only one basic environment. Although, in this work, to simplify, 
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 values are 1, if the corresponding 

Gaussians are the most probable ones, and 0 in any other case 
(hard Gaussian estimation approach). 
4.2. The M step 
To obtain the maximum likelihood estimates for the unknown 
parameters of the cross-probability GMM, ( )( )kQ ΘΘ  is 

maximized with respect to them. So, the corresponding 
expressions for the (k+1)th iteration are 
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As it has been indicated, for MEMLIN, the cross-probability 
GMM parameters have to be estimated independently for each 
basic environment using the labeled training corpus ( )eTreTr YX ,, , . 

So, the expressions (8) and (9) are transformed into 
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5. NORMALIZED SPACE ACOUSTIC MODELS 
 
Feature vector normalization techniques try to map the noisy 
feature vectors to the clean space. However this mapping is not 
perfect and a new normalized space is created, which is different 
from the clean one. Thus, a further improvement can be obtained 
adapting the clean acoustic models towards the normalized 
space. For this purpose, the noisy training data are normalized in 
the same way as testing data and the original clean acoustic 
models are adapted with those data towards the new normalized 
space. If there are enough data, Maximum Likelihood (ML) 
algorithm can be used, but a model adaptation method should be 
applied otherwise (Maximum A Posteriori, MAP [10], MLLR 
[11]...). In this work, once the MEMLIN normalized space 
acoustic models are obtained, the normalized testing data can be 
recognized directly with them.  

6. RESULTS 
6.1. Results with SpeechDat Car database 
To observe the performance of the cross-probability GMM 
proposed in a real, dynamic, and complex environment, a set of 
experiments were carried out using the Spanish SpeechDat Car 
database [7]. Seven basic environments were defined: car 
stopped, motor running (E1), town traffic, windows close and 
climatizer off (silent conditions) (E2), town traffic and noisy 
conditions: windows open and/or climatizer on (E3), low speed, 
rough road, and silent conditions (E4), low speed, rough road, 
and noisy conditions (E5), high speed, good road, and silent 
conditions (E6), and high speed, good road, and noisy conditions 
(E7). 

The clean signals are recorded with a CLose talK (CLK) 
microphone (Shure SM-10A), and the noisy ones are recorded 
by a Hands-Free (HF) microphone placed on the ceiling in front 



of the driver (Peiker ME15/V520-1). The SNR range for CLK 
signals goes from 20 to 30 dB, and for HF ones goes from 5 to 

20 dB. 
 

Trai
n Test E1 E2 E3 E4 E5 E6 E7 MWER(%) 

CLK CLK 0.9
5 2.32 0.70 0.25 0.57 0.32 0.00 0.91 

CLK HF 3.0
5 

13.2
9 

15.5
2 

27.3
2 

31.3
6 

35.5
6 

53.0
6 21.49 

HF HF 3.8
1 6.86 3.50 3.76 4.96 4.44 3.06 4.63 

HF* HF 1.1
4 4.37 1.68 2.13 2.10 2.06 23.1

3 3.42 

Table 1. WER baseline results, in %, from the different basic environments (E1, …, E7). 

 
For speech recognition, the feature vectors are composed of 

the 12 MFCCs, the energy, first and second derivatives, giving a 
final feature vector of 39 coefficients computed every 10 ms 
using a 25 ms Hamming window. On the other hand, in this 
work, the feature vector normalization methods are applied only 
to the 12 MFCCs and energy, whereas the derivatives are  
computed over the normalized static coefficients 

 The recognition task is isolated and continuous digits 
recognition. The acoustic models are composed by 16-state 3 
Gaussian continuous density HMM to model the 10 Spanish 
digits and 2 silence models for long (three-state 6 Gaussian 
continuous density HMM) and interword (one-state 6 Gaussian 
continuous density HMM) silences are used. 

The Word Error Rate (WER) baseline results for each basic 
environment are presented in Table \ref{table1_baseline}, where 
MWER is the Mean WER computed proportionally to the 
number of words in each basic environment. Cepstral mean 
normalization is applied to testing and training data. ``Train'' 
column refers to the signals used to obtain the corresponding 
acoustic HMMs: CLK if they are trained with all clean training 
utterances, and HF and if they are trained with all noisy ones. 
HF$\dagger$ indicates that specific acoustic HMMs for each 
basic environment are applied in the recognition task 
(environment match condition). “Test” column indicates which 
signals are used for recognition: clean, CLK, or noisy, HF. 

Table 1 shows the effect of real car conditions, which 
increases the WER in all of the basic environments, (“Train” 
CLK, “Test” HF), concerning the rates for clean conditions, 
(“Train” CLK, “Test” CLK). When acoustic mod2els are 
retrained using all basic environment signals, (“Train” HF) 
MWER decreases. Finally, and in spite of the high WER reached 
for the basic environment E7 due to the reduced number of 
training utterances, 3.42% of MWER is obtained for 
environment match condition. 

Figure 3 shows the mean improvement in WER (MIMP) in 
% for MEMLIN and MEMLIN with Cross-Probability model 
based on GMM (MEMLIN CPGMM). Also the results with 
SPLICE with Environmental Model Selection (SPLICE EMS) 
[4] are included. MIMP is computed as 

( )
HFCLKCLKCLK

HFCLK

MWERMWER
MWERMWERMIMP

−−

−

−
−

=
100 ,     (23) 

where  is the mean WER obtained with clean 
conditions (0.91 in this case), and  is the baseline 
(21.49). So, A 100% MIMP would be achieved when MWER 
equals the one obtained under clean conditions. The cross-
probability GMMs are composed by 2 Gaussians for each pair of 

clean and noisy Gaussians. It can be observed the important 
improvement of MEMLIN CPGMM concerning MEMLIN: 
from 62.57% to 75.79% with 4 Gaussians per basic environment 
and from 74.08% to 82.86% with 64 Gaussians. 

CLKCLKMWER −

HFCLKMWER −

Although the number of Gaussians to model the basic 
environments could be the same for MEMLIN and MEMLIN 
CPGMM, the computing time is not the same. To reduce it, only 
the cross-probability GMMs of the most probable pairs of 
Gaussians could be computed in normalization. Some 
experiments were carried out considering this alternative, 
showing that similar results can be obtained computing only a 
reduced number of pair of Gaussians [6]. 

Table 2 shows the corresponding matching condition results 
(MWER and MIMP) when normalized acoustic models are used 
(clean and noisy condition results, Train CLK, Test CLK and 
Train HF, Test HF, can be observed in Table 1 to compare). In 
Train HF MEMLIN and Train HF MEMLIN CPGMM, the noisy 
training data normalized with MEMLIN or MEMLIN CPGMM 
are used to retrain the corresponding new acoustic models with 
the ML algorithm. The number of Gaussians per basic 
environment is included next to the normalization techniques 
and for MEMLIN CPGMM, the noisy feature vectors for each 
pair of Gaussianas  and  are modelled with 2 components 

(there is not significant differences in recognition if the basic 
environments are modelled with different number of Gaussians). 
Clearly there are significant improvements when normalized 
space acoustic models are used. It can be observed that the 
improvement with respect to using clean acoustic models is 
significant (4.44% and 5.95% of MWER for MEMLIN CPGMM 
and MEMLIN, respectively), and the comparison is even 
satisfactory if we compare the results with the ones reached with 
environment match condition (“Train” HF, “Test” HF and 
“Train” HF *, “Test” HF). This is because the normalized space 
is not as heterogenous as the noisy one and the training process 
can be more effective. 
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Fig. 2. Mean improvement in WER, MIMP, in % for MEMLIN,   
MEMLIN with Cross-Probability model based on GMM, MEMLIN 
CPGMM, and SPLICE with Environmental Model Selection, SPLICE 
EMS. 
 
6.2. Results with Aurora2 database 
Aurora2 database [8] is built from TIDigits database utterances 
that have been digitally corrupted by passing them through a 
linear filter and/or by adding different types of noises at SNRs 
ranging from 20dB to -5dB. This does not define a real 

 
Train Test MWER(%) MIMP(%) 
HF MEMLIN 64 HF MEMLIN 64 1.67 96.33 
HF MEMLIN CPGMM 
128 

HF MEMLIN CPGMM 
128 

1.47 97.27 

Table 2. Best MWER and MIMP obtained with MEMLIN and MEMLIN CPGMM and matched acoustic models. 

Trai
n Test -5 

dB 0 dB 5 dB 10 
dB 

15 
dB 

20 
dB clean MWER (%) MIMP (%) 

CLK HF 6.83 10.7
1 

30.7
5 63.53 88.55 97.08 99.0

5 58.12 -- 

CLK HF MEMLIN 64 24.5
8 

50.7
6 

78.6
8 92.53 97.26 98.33 99.2

5 83.51 62.49 

CLK HF MEMLIN CPGMM 
64 

26.5
7 

55.5
3 

82.9
8 94.40 97.53 98.51 99.2

5 85.79 67.52 

Table 3. Best results obtained with MEMLIN and MEMLIN CPGMM with car noise contaminated signals of Aurora2 database. 

 
environment because not all kind of degradations are included 
i.e. Lombard effect [12]; but, in spite of this weakness, Aurora2 
is one of the most used database and it is almost a standard 
database to compare different techniques. 

In this work, the MEMLIN and MEMLIN CPGMM 
parameters were trained using identical utterances from the clean 
training set and the multi-condition training set. This tunes the 
normalization parameters on the noise types from set A, keeping 
sets B and C as unseen conditions. Although the results for the 
three sets were obtained, in this work we only present the results 
with car noise contaminated signals, which is considered as 
testing corpus and it is marked as HF to maintain the 
nomenclature. The parameters for speech recognition (acoustic 
models and feature vectors) are obtained as the same way as it is 
indicated in Subsection 6.2. 
The recognition results obtained with Aurora2 database are 
presented in Table 3. It can be observed that MEMLIN and 
MEMLIN CPGMM maintain the satisfactory performance, 
obtaining a mean improvement of 62.49% and 67.52%, 
respectively (the improvement is computed in this case as ETSI 
recommendation).  
 

7. CONCLUSIONS 
In this paper we have focussed on an approach of MEMLIN 
where the cross-probability model is estimated by modelling the 
noisy feature vectors associated to each pair of Gaussians from 
the clean and the noisy basic environment spaces with a GMM. 
MEMLIN obtains an improvement in WER of 75.53% with 128 
Gaussians per environment with SpeechDat Car database in 
Spanish, whereas MEMLIN with cross-probability model based 
on GMM reaches 82.86% for 64 Gaussians to model each basic 
environment. If we consider Aurora2 database, and the 

recognition test is composed only by the car noise corrupted 
signals, the improvements are, modelling each basic 
environments with 64 Gaussians, 62.49% and 67.52%, 
respectively. On the other hand, in order to reduce the mismatch 
between normalized feature vectors and clean acoustic models, 
we propose to obtain acoustic models which represent the 
normalized space. Applying this procedure to SpeechDat Car 
database, important improvements are obtained: 96.33% and 
97.27% if the normalization technique is MEMLIN or MEMLIN 
CPGMM with 64 and 128 Gaussianas per basic environment, 
respectively.  
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