
3-D Driver Profiling Using CMAC 
Abdul Wahab, G. W. Toh 

Center for Computational Intelligent, Nanyang Technological University, 
Blk N4 #2A-36, Nanyang Avenue, Singapore 639798 

and  
Hüseyin Abut 

ECE Department, San Diego State University 
San Diego, CA 92182, email: abut@akhisar.sdsu.edu  

 
Abstract 

The influence of a person’s nature and environment 
makes us unique.  Especially in driving each of us 
behave differently when responding to situation. These 
differences could be the way our subconscious mind 
works and respond. In addition the switching between 
the subconscious to conscious mind will also produce 
unique respond on how the brain perform each 
switching. Since the activation of movements are 
controlled by the cerebellum we propose the use of 
cerebellum model articulation controller (CMAC), 
introduced by Albus, to model each driver behavior. In 
this paper we only focus on using the gas pedal and 
brake pedal pressure of the driver to understand the 
translation of the driver behavior to difference 
environment. Experimental results from the CMAC 
profiling show the potential of extracting features of 
drivers for identification, emotion and other behavioral 
conditions. 

1. Introduction 
The cerebellar model articulation controller (CMAC), 
developed by Albus, is a simple network architecture, 
which provides the advantages of fast learning and a 
high convergence rate [1]. The CMAC model has been 
successfully applied to various fields, such as robot 
control, signal processing, pattern recognition, and 
diagnosis.  And now for this experiment it will be 
applied for driver profiling. In order to effectively 
utilize its advantages and achieve reasonable accuracy, 
there is a need for careful consideration in selection of 
the size/resolution of the CMAC as well as the method 
of profiling. 

The CMAC size will not only determine the amount of 
time and computation cost, but also effectiveness in 
exploiting CMAC neighborhood properties.  Therefore 
too large or too small a size selected might cause low 
space utilization and lost of neighborhood property 
advantage as well as the lost overlapping of values 
respectively.  But even before a size is implemented, 
proper profiling must be examined.  Profiling indicates 
the need for selection or augmentation of available 
variables in the problem domain and one or few 
mapping functions.  Mapping function will eventually 
determine how the data will be profiled by defining its 
coordinates and weight values. 

The CMAC memory can also be visualized as a neural 
network consisting of a cluster of two-dimensional self-
organizing neural network (SOFM).  However, instead 

of a random initialization of the neural net weights, they 
are fixed such that they form a two dimensional grid as 
shown in Figure 1. 
The winning neuron in the CMAC memory at time step 
k is identified as the neuron with weights Q(yref(kT)) 
and Q(yp(kT-T)) given the inputs yref(kT) and yp(kT-T).  
The weights are effectively the coordinates i,j of the 
location of the neuron in the SOFM.  The output of the 
winning neuron can be directly obtained from the 
weight wi,j of the output neuron. 
As in the Kohonen’s neural networks framework, 
CMAC learning is a competitive learning process and 
follows SOFM learning rules.  However, since the 
weights of the cluster of neurons that represent indices 
to the CMAC memory are fixed, learning only occurs at 
the output neuron.  To achieve this the CMAC learning 
rule is based on the Grossberg competitive learning rule 
and is applied only to the output layer and no 
competitive Kohonen learning rule is applied to the 
input layer.  Therefore, the CMAC learning rule can be 
represented by [2]: 
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where λ =  learning constant , 
 x(kT) =  plant input at discrete step k , 
 yref(kT) =  reference input at discrete step k , 
 yp(kT-T) =  plant output at discrete step k-1 , 
 wi,j

(k) =  contents of CMAC cell with 
coordinates i, j at discrete step k, 
and 

 Q(⋅) =  the quantization function defined 
in equation (1). 
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Figure 1. CMAC memory Architecture 
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2. CMAC Profiling 
From previous tests carried out on a 3-D CMAC, it is 
observed that random distribution of values will result 
in poor accuracy in results.  But when the values are 
organized such that their neighboring values differ by a 
relatively small amount, its accuracy is very high.  Here 
the neighboring values are defined as a single unit 
distance in all dimensions.  Thus the factor affecting the 
accuracy of a CMAC is the distribution or organization 
of values.  And the specific area of distribution this 
paper tries to optimized is known as profiling.  And the 
two factors that largely influence the profiling is the 
selection of variable values and their respective 
coordinates in the CMAC. 
First, the variables must be of significant purpose and 
ideally should have large amount of distinct possible 
values it can take.  These variables maybe further 
processed or augmented to enhance their distinctive 
properties or reduce noise. The result will then allow for 
a wide variety of combination and rich expression of 
the variables. Next, after the variables are identified, 
there is a need to express these variables on the CMAC.  
For a 3-D CMAC, there are three dimensions.  
Therefore three values must be identified, besides the 
large number of features collected; there is another 
important aspect as how these features will play a role 
in profiling.  Furthermore, distribution should be 
created to reduce or remove overlapping values that will 
cause lost of information and take advantage of 
neighborhood property of the CMAC.   
As in simpler versions, there is no physical storage of 
the actual entire 3-D CMAC of the defined size, but 
instead for this experiment three weight tables are used 
to store the values that will be combined to re-construct 
the entire CMAC.  Therefore, a series of mapping are 
done to the coordinates and values from the represented 
CMAC to the weight tables.  After the resolution of the 
CMAC is decided, there will be a function to calculate 
the size of the weight tables.  Then after pairs consisting 
of coordinates and its respective values may be entered 
into the CMAC, upon attempting to store the values into 
the CMAC, a function will be used to derive its 
coordinates in the three weight tables. From there, the 
initial weights stored in the tables will be retrieved and 
compared with one third of the desired value to be 
stored and three differences between the stored and 
desired values will constitute to the error.  Then the 
CMAC will alter its values in the weight table with 
respect to the error calculated.  This process maybe 
iterated many times to reduce the error and thus achieve 
a closer estimation of the desired values in its respective 
coordinates. 
After completion of its storing phrase, retrieval would 
only consist of the getting its actual coordinates and 
deriving the coordinates in the three weight tables and 
sum together.  Usually all the values will be retrieved, 
unless specific set of coordinates are defined.  Through 
the iterating the storing phrase, the result retrieved will 
be an estimation of the numerous different values. 

3. Driving Profiling 
The driving data utilized in this research are from the 
In-car Signal Corpus hosted at Nagoya University, 
Japan [3]. The In-car Signal Corpus is one of several 
databases available. This database contains multi-
dimensional data collected in a vehicle under both 
driving and idling conditions. The purpose of setting up 
the database was to deal with both issues, namely noise 
robustness of speech and continual change of the 
vehicular environment. To date, the number of subjects 
involved in the data collection amounts to about 800 
with a total recording time of over 600 hours. The 
multimedia data consists of speech, image, control 
(driving) and location signals, all synchronized with the 
speech recording. For this research, only the driving 
signals (accelerator pedal pressure & brake pedal 
pressure) were utilized.  

Modeling and studies of driving behaviors began as 
early as in the 1950s. Many of the studies have been 
conducted to improve traffic safety or the performance 
of intelligent vehicle systems [ 4 ]. However, the 
utilization of driving behavior for personal 
identification is still not widely explored.  
Segments known as stop-go regions were extracted 
from the original collected driving signals for the 
experiments. The motivation for using just the stop-go 
regions instead of the entire signals is instinctive since 
little or no information pertaining to driving behaviors 
is present when the vehicle is not in motion. Also, with 
the exception of engine and vehicle speed, the other 
signals are all driver-dependent and can be used in our 
analysis. The dynamics of the pedal pressure is defined 
as the rate of change in pressure applied on the pedal by 
the driver. These dynamics signals offer additional 
information on the “hardness” of the drivers’ pressure 
on the pedals. Below are the diagrams of the five 
recorded driving signals and two derived signals 
(accelerator and brake dynamics) belonging to one 
particular female driver over the duration of one stop-go 
region. 

 
Figure 2. Accelerator signal and its Differential  

 
Figure 3. Brake signal and its Differential  



 
Figure 4. Vehicle Speed  

4. Experiments 
Initially the drivers’ data were in time domain.  But 
because there is no fixed amount of time for the datasets, 
therefore it would be unsuitable to carry out 
experiments on the datasets.  Therefore the power 
spectral density of each dataset is used instead. 

In earlier experiments, it was observed that using the 
acceleration and brake pedal signals allows for the best 
training and identification of the driver’s identity.  
Furthermore, the previous experiments also showed a 
higher accuracy of driver identification when a 
combination of the first derivation of the acceleration 
and brake pedal signals are used instead of solely 
relying on the collected signals.  Therefore in this 
experiment, both the initially collected acceleration and 
brake pedal signals and their first derivatives are used.  

In the next set of experiments, a 3-Layered CMAC was 
employed to derive a 3-D plot as a profile for each 
driver.  From the acceleration and brake pedal pressure 
signals and their first derivatives, a total of four signals 
are available to derive a 3-D profile.  After the 
conversion of the signals from time domain to 
frequency domain, all signal will the same dimension 
length for the frequency, but varying amplitude values.  
And since both acceleration and brake signals together 
with their first derivation share a common set of values, 
their frequency values, therefore it would be sensible to 
use this common property to link two sets of signals 
together.  But unlike the frequency values, amplitudes 
values are not common; therefore, amplitudes of these 
two signals will be normalized to values with respect to 
the desired CMAC resolution.  Therefore essentially, 
this problem is map a fixed set of values (frequency 
range) into different points (coordinates derived from 
their amplitudes) on a 2-D plane and the result is a 3-D 
plot in CMAC. 

Since four possible signals can be derived for a single 
driver, therefore it is possible to create a combination of 
four different pairs of values to be used coordinates to 
allocate coordinates for the frequency values in the 
CMAC. 
But if only a single set values were to be used to map 
into a CMAC, then it would fail to utilize the 
approximation capability of the CMAC, and a simple 3-
D plot might be suitable.  Furthermore, taking a single 
experiment or event and classify their occurrences or 

recognize their identity will be bias and would fail.  
Thus the CMAC is applied to approximate average of 
10 different datasets collected for each of the drivers, 
such an approximation has the ability to not only to 
allow small variations, but will also be able to capture 
occasional abnormalities.  Although such abnormalities 
may seem distract the ability to correctly identify the 
driver’s most likely behavior, but such abnormalities 
can be limited and controlled by specifying the learning 
rate of the CMAC.  A large learning rate will have a 
higher probability of allowing such abnormalities to 
appear, while smaller probability of the appearance of 
the abnormalities appearing for a small learning rate. 
After the creation of the CMAC plots, a possible 
average CMAC for all the drivers may be done to allow 
comparisons with the average thus leading to a possible 
correct prediction of the driver’s identify.  Such an 
average CMAC is created can be created by allowing a 
CMAC to iteratively learn the set of CMAC profiles 
derived from the drivers.  Besides making a large 
number of iterations to ensure a good approximation of 
their average, ideally the order in which the CMAC 
profiles are presented to the learning average CMAC 
should be random, so as to avoid a bias average CMAC. 

5. Discussions 
From the mesh and contour plots for the drivers, besides 
being able to visually differentiate the one driver profile 
from another, it is also possible to identify driver 
features. 
Since it is observed from the plot that for large values 
of derivate for brake reflected by the increasing number 
of peaks for larger values belonging to the derivative of 
brake axis, then by interpreting from the plots, it shows 
that most drivers then to create huge change of brake 
pedal pressure very often.   
But with respect to the plots, the change in acceleration 
pressure would be milder, as peaks tend to be at the 
lower values for the derivative of acceleration axis.  But 
these observations can only be considered estimation, 
considering the CMAC averaging properties among 
neighbors and the possibility of overlapping coordinates. 
But on an average due to combining the frequencies of 
two different signals to represent their features, there is 
larger possibility and capability of differentiating the 
origin of the features, and for this case the identity of 
the drivers.  This is because it maybe highly possible 
for some drivers to share certain characteristics of 
handling the accelerator and brake pedal, but sharing 
the characteristics over 2 features decreases the 
probability of a similar profile for different drivers.  
Furthermore, frequencies are measured and 10 samples 
are collected, therefore rare characteristics of the drivers 
will have less influence on the profile to prevent similar 
representations for different profiles. 
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Figure 5 Contour plot of six different driver of the brake pedal versus the gas pedal 
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Figure 6 3-D mesh plot of one driver of the derivative brake signal against the derivative gas pedal signal. 

 
m1       f1 

Figure 7 Contour plot of one driver of the derivative brake signal against the derivative gas pedal signal. 
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Figure 8 Contour plot of one driver of the brake pedal signal against the derivative brake pedal signal. 
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Figure 9 Contour plot of one driver of the gas pedal signal against the derivative gas pedal signal. 
 

 

For Figures 5 to 9, the values for the 2-D points are 
taken from their common normalized frequency values 
and their coordinates are normalized from amplitude 
values of psd with respect to their own features defining 
its axis.   
From Figure 6, it shows the 3-D mesh plots of a male 
(m2) and female (f2) driver.  Generally the plot for f2 
has a larger number of high frequency distribution 
compared to m2.  Besides containing higher 
frequencies, there is a exceptionally steep peak around 
the normalized values of derivative brake pedal 
pressure from 65 to 75 and derivative of gas pedal 
pressure from 70 to 80.  Furthermore, there is a 
reasonable amount of small frequencies observed in the 
area where derivative of brake pedal ranges from 0 to 
20 and derivative of gas pedal ranges from 15 to 35. 
Continuing, Figure 7 provides a contour plot of another 
pair male and female of derivative of both the brake and 
gas pedal pressure.  The contour plot provides a 
different representation of the same information.  It 
provides a more definite view of the points compared to 
the 3-D mesh that may tend to focus on both frequency 
values which is represented by the peaks.  Here another 

different pair of drivers is discussed, but the areas of 
differences observed are very similar to the mesh plot. 
Therefore for the rest of the discussion, the paper will 
focus on contour plots only. 
Starting with Figure 5, it provides gas and brake pedal 
pressure plots for six different drivers.  Overall, there is 
an clear difference in the distribution of frequency 
values in the these plots compared to when their 
derivatives are applied to at least one axis.  There are 
mainly two extremely different areas for these six plots.  
The first area is defined by brake pedal pressure from 
60 to 100 and gas pedal pressure from 90 to 110.  In this 
area, there is not definite distinction between female 
and males drivers, but each driver has a different 
distribution of frequency values among one another.  
While another area is defined with values of brake 
pedal pressure ranges from 0 to 30 and gas pedal 
pressure ranging from 0 to 40.  Among the six contour 
plots, the second area provides a more distinctive 
distribution of values compared to the first area 
identified.  Example would be for m4 to have relatively 
less amount of points compared to m1, m2, m3 and f2, 
except for f1 contain also a small number of points, but 



still significantly more than m4.  And among m1, m2, 
m3 and f2, m1 and m2 contained more higher frequency 
values, but still differ in their shape, while m3 and f2 
although contain lower frequency values, but between 
them also differ in their shape in distribution of 
frequency values.   
Figure 8 shows the contour plot of the brake and 
derivative of brake pressures.   There are three main 
areas that differ between the plots.  Firstly, for the area 
defined by derivative of brake in the range of 70 to 90 
with brake also in the range 70 to 90, there is a larger 
distribution of small frequency in f1 compared to m1.  
Secondly, the area with derivative brake pedal ranging 
from 50 to 80 and brake ranging from 0 to 35, f1 has a 
larger spread of small frequency, while m1 has higher 
frequencies observed around the point derivative brake 
pedal = 60 and brake = 20.  Thirdly, the area with 
derivative brake ranging from 0 to 40 and brake ranging 
from 40 to 60, f1 again has a larger spread of variety of 
different frequencies compared to m1 which contained 
a smaller set of values in that area. 
Generally the areas of difference for Figure 8 and 
Figure 9 are very similar.  The main exception would be 
that the area of derivative gas and gas between defined 
by the square of both axes ranging from 70 to 90.  Both 
f1 and m1 do have almost the same amount of 
distribution of points, but shapes of arrangement for 
frequency values for both drivers are slightly different. 

6. Conclusion 
Besides carrying out with experiment with frequency 
values to be used as the pre-determined set of values to 
be mapped, variances in the amplitudes of the power 
spectral densities were applied.  But due to the lost of 
information created by small variance in a large number 
of amplitudes, it was not applicable for driver 
identification.  But because instead of the frequency 
values, the variance is used, the plot was able to 
highlight the characteristics that vary the most among 
drivers.   

From such a plot it is able to highlight information that 
using the frequency values have failed to identified.  In 
plots made by frequency values, there is usually weak 
or even no significant indication of the driver’s 
characteristic of applying large increase in the 
accelerator and brake pedals.   
And the plot had peaks at the far right corner or largest 
increase in the accelerator and brake pressure, therefore 
it is highly probable the critical characteristic in which 
will be able to identify drivers will be the rate of 
increase in accelerator and brake pedal pressures. 
From such an observation, if we assume that a driver’s 
feature is highly influenced by his or her emotions, then 
it maybe possible to extract features that will have the 
capability to assist in determining the state of emotion 
of the driver.  Thus if further effort were to focused on 
optimizing the values to be mapped, it will have a high 
possibility of being able to not only accurately identify 
the driver’s identity, but may even eventually predict 

the emotions and emotional behavior when compared 
with the average driver’s profile. 
Finally, to successfully identify the drivers’ identity and 
emotions, critical or differentiating features maybe 
extracted from the CMAC plots by either human 
inspection or clustering methods. Human inspection 
will include a visual observation of the plots of at least 
a majority of drivers to derive a certain distribution of 
values in the CMAC. 
While the clustering methods would require a 3-D 
clustering method that will eventually be able to 
construct effective rules that assist direct or indirect 
application towards accurate classifications and 
predictions. After defining features in the CMAC, 
further effort should be done towards testing and 
refining the techniques of feature extraction from the 
CMAC or even improve the feature during the process 
of storing.  Further improvisations maybe done by 
augmenting the storing process to the CMAC or/and the 
feature extraction process from the CMAC to 
compliment one another.  Only after continual and 
thorough tests and refining, then it would be possible to 
achieve a reasonable and effective method of driver and 
emotion identification. 
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