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ABSTRACT called permutation problem, caused by the permutation am-
biguity of the ICA solution. If the permutation problem is
not solved, performance of sound segregation is insufficient.
. . - . That is because a separated signal in the time domain con-
blind source separation within the framework of indepen- __. . .
tains frequency components from other source signals. This

dent component analysis. Towards this problem, we pro- : )
pose a method which uses reference signals. For each freE)rObIem affects the speech segregation performance seri-

quency bin, the permutation alignment is fixed by calculat- ously, and it is necessary to align the permutation precisely

. ! - ; for each frequency.
ing correlation coefficients between the reference signal and : .
Various methods has been proposed for solving the per-

the separated signal. Reference signals are obtained as si(_:iT—1 tati bl 0o hi ina th v of
nals corresponding to each individual original sources. The. utation problem. ©ne approach IS using the property o
nterfrequency correlations of output signal envelopes [1].

reference signals are chosen or obtained subjectively, ancinthi roach. it is known that misalianment i lected
do not need to be separated well. For example, the con- S approach, 1t1s Kno at misalignment 1S cotlecte

ventional beamforming technique gives suitable referenceconsecutively after failin_g to align pr(_ecisg permut_ation for
signals. The experimental results of double talk recognition one frequency. Another is based on direction of arrival (DOA)

with 20K vocabulary show that the proposed method is ef- estimation from the ICA solutiqn [2]. This i.S a precise and
fective to achieve 20% error reduction rate compared with robust method, however there is no experiments where the

the established DOA-based approach. number of microphones is larger than that of the sources.
We propose a new method by taking advantage of the

correlation between reference signals and estimated origi-

nal sources for each frequency. The reference signals are

Multi-talk recognition is indispensable to realize various ap- Obtained corresponding to original components. The per-

plications of hands free speech recognition, for example, mutation is chosen so that its alignment gives a correlation

conversation systems such as a humanoid robot, dictatiorS large as possible. The reference signal is obtained suit-

systems of a meeting, interfaces of car-navigation systems.ably for the problem and not needed to be separated com-
Recently, blind source separation (BSS) within the framePletely. We apply beamforming and time-frequency mask-

work of independent component analysis (ICA) has beening to acquire reference signals. In this way, the permutation

studied actively as one of the approaches for speech segre@Mbiguity is removed from the segregated speech.

gation or enhancement. BSS is the problem of separating [N the following section 2, formulation of the BSS is

independent Originai sources from a mixed Signai where thedescribed. In section 3, the definition of the reference Signal

mixing process is unknown. and the algorithm of the proposed method is described in
The difficulty of separating a mixture speech signal is detail. In section 4, conditions and results of a continuous

due to the delays and reflections of the ambient environ-SPeech recognition experiment are described. We give the

ment. The recorded signals are no longer instantaneougonclusion in section 5.

mixtures but convoluted mixtures. An approach toward con-

vpluted mi>_<ture i_s to transform_time signalsinto time-frequency 2 BLIND SOURCE SEPARATION IN THE

S|gnals using _vvmdowed Fourier 'I_'ransform. The_ merit of FREQUENCY DOMAIN

this approach is that the ICA algorithm becomes simple and

can be _separated for each freq_uency. Also, any compl_ex-z_l_ Formulation of the sound

valued instantaneous ICA algorithm can be employed with

this approach. We assume the environment whefesound sources exist
However, BSS in the frequency domain includes the so and the sound field is observed BY microphones. We

This paper presents a method for solving the permutation
problem. This is a problem specific to frequency domain

1. INTRODUCTION



define the input vectox (w, t) as the STFT coefficient of 2.3. ICA

the input signal. : : . .
putsig We separate the signals by processing with the solution of

x(w,t) = [X1(w, 1), ..., Xar(w, )" (1) ICA at each frequency after preprocessing. A solution of
complexed-value ICAU is obtained so that the compo-
xm(w,t) denotes the STFT coefficient at microphonew nents of the reconstructed signals
andt denote the discrete frequency and frame index respec-
tively. Using the transfer functiorx is written as below. z = Uy (8)
x(w,t) = A(w)s(w,t)+n(wt) ) are mutually independent. In this paper, We use JADE (joint
approximate diagonalization of eigen matrices) extended to
where, complex values, which is based on the 4th order cumulant
[6]. For the sake of convenience, the product of subspace
Aw = [a1 (W), -, aswW)]" (3) filter W andU is defined as separation filt&.
S(w7t) = [Sl (wvt)7"' 7SS (w7t>]T (4) B=UW (9)
n(w,t) = [Ni(wt), -, Ny (w,t)]" (5

The symbola, (k) denotes the impulse response converted 2.4. Scaling problem

into the time-frequency domain from theth source to the  |deally we expecB to be the inverse oA, but we lack
microphones at discrete frequeneys is the time-frequency  amplitude information of the source signals and their order.

representation of the source signals,(w,t) denotes the  So there remains indefiniteness of permutation and scaling
spectrum ofs-th source.[]7 denotes the transposition. To factors as below,

simplify the expression, we omit the symholandt¢. This
shows that a convoluted mixture is transformed into a sim- D(w)P(w)B(w)A(w) =1 (10)

ple instantaneous mixture for a fixed ) ) o
whereP is a permutation matrix, i.e. all the elements of

each column and row are expect for one element with
valuel, andD is a diagonal matrix. The output of the sepa-
It is essential for good performance of ICA that the signal is ration filter must be processed with the permutation matrix
preprocessed [3]. Especially, when the number of sosces P and the scaling matrid. The scaling matriXD,,, is a
is different than that of microphonéd, it is indispensable S x .S diagonal matrix represented as follows
to preprocess the inputs.

We employ the subspace method [5] in preprocessing. D,, = diag[By,,, .., Bysl- (11)
At each frequency, the spatial correlation mafxis de- 4
fined asR = E[xx!] where[]” denotes the Hermitian By, is the (m, 5)-th element of the Moore-Penrose pseu-
transpose. In the subspace method, we assume(thand doinverse ofB. The signal proce_ssed 18/,, is S estimates
n(t) are uncorrelated. This assumption holds to some extent?! Sources observed at the th m|crqphone [5]. .
in a practical sense when the the length of impulse response . Hoyvev_er, the problem of resolving the permutation ma-
is shorter than the STFT window length. Furthermore, as- trix P is still open.
suming thatn(t) is spatially white, we apply generalized

2.2. Preprocessing

eigenvalue decompositidR = KEAE~! on the assump- 3. PROPOSED METHOD
tion of K =1. The subspace filtéW is defined as below.
Using this filterW, the input signal is preprocessed. 3.1. Whatis the reference signal?
1 The reference signals correspond to each of the individual
W = \/Xs E; (6) original sources. The reference signals are roughly sepa-

y = Wx ©) rated from observed mixture with a different process than
ICA. The reference signal does not need to be separated

The symbolE, and A, is eigenvector and eigenvalue re- thoroughly. We expect that the reference signal has two
spectively. They represent signal subspace, and correspongroperties as below. First, the reference signal correlates
to the S largest eigenvalues chosen. The inputs pre-  \ith the original source properly. Second, if the original
processed by subspace filter in this way. In the case withsource is the same, the envelope of source signal and ref-
the number of microphones equivalent with that of sound erence signal correlates even for different frequencies. If
sourcesM = S, the subspace filter is replaced by the PCA the signal has these two properties, it can be the reference
filter W=vA EH. signal.
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The practical step is described below.

1. We define the similarityim(w) using the correlation.
We consider that this measures how well the signal is
separated from the observed mixture.

sim(w) = Z cor(£Z(w;i), EZ(w; 7))
i#]

(14)

Sortw in order of weakness of correlation between

independent componentsdn
sim(wy) < sim(wg) <,..., < sim(wmax)  (15)

We process this order,, .
tation alignment.

.., Wmax 10 fix the permu-

2. Forw;, we resolve the permutatidf,, (¢) which max-
imizes the summation of correlation between the sep-
arated envelope af; and the reference envelope at
frequencies fromw;_s to w;ys. Additionally, when

Fig. 1. Conceptual diagram to fix permutation alignment
(Permutation is addressed with respect to each frequency.
A Two-headed arrow means a correlation pair calculated.
Solid line and dotted line mean different permutation align-
ment.)

any permutationl from w;_s tow; 1 s is already fixed,

we consider the correlation between the envelope of
w; andw,, where £ denotes the set of frequencies
whose permutation has already been fixed. This is
achieved by maximizing the formula within all the

possible permutationd as described below.

i{a Z cor(é‘R(wl/; i),EZ(wl;H(i)))

i=1  |I'—1|<s

+4 Z cor(é’Z(wl/;i),gZ(wz;H(i)))} (16)
W—t<s
Vel

Basically, we can mak#& (the number of sources) ref-
erence signals. However, we do not always have to prepare
S reference signals. At least, we can get the separated sig-
nals solved the permutation problem by an increment of the
reference signals.

3.2. Detail algorithm for solving the permutation prob-

lem based on the reference signal Figure 1 shows the conceptual diagram of proposed

method.
In this subsection, we show the proposed method to fix per-

mutation alignment in detail, that is, obtaining the permuta- 3.
tion matrix P based on the reference signal. We assume that

the reference signals have been obtained by another process
which differ from ICA. We described the way of producing
the reference signals in the next subsection.

We define the separated signal corresponding tasthe
th source and observed at theth microphone in discrete
frequencyw asZ,, (w; s). Similarly, We define the reference
signal asR(w; s). We use the envelope estimatbas

We assign the permutation 2 (w;; ¢) for all j to get
the separated spectrogram.

Zj(wi3 i) = Zj(wi; 11(2)) 17)
Figure 2 shows the difference between a minimum and a
maximum of formula (16) when the number of the sepa-
rated signal and reference signal is two. We consider that it
expresses the correlation between separated signal and ref-
erence signal can be a criterion to determine the permuta-
tion. As a result, the permutation ambiguity can be solved.
The separated spectrogram is converted into the time do-
main signal by applying the inverse Discrete Fourier Trans-
form (IDFT) to Z; (w; )

1 M
EZ(wis) = 37 D |Z(wis)]. (12)
j=1

We define the correlation of the two signalg) andb(t) as

below — - 3.3. How to make the reference signal
cor(a,b) = Hab = Ha ' Fb (13) , . . :

Oa " Op In this subsection, we discuss the method of producing the
wherep, ando, denotes the mean and standard deviation reference signal. Itis sufficient to use the conventional method

of a respectively. to make the reference signal.
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Fig. 3. Diagram of the proposed method using time-

Fig. 2. Similarity between separated signal and reference . ! .
frequency masking to synthesize the reference signal.

signal. (Dots and squares are a minimum and a maximum
of equation (16) respectively at each discrete frequency.)

We assume two cases, in which there are enough mi-3.3.2. Beamforming

crophones to apply beamforming technique and not. Con-

cretely speaking, we process in the case of the number of'Vhen there are two microphones, we apply the beamform-
microphones of two and eighfi{ = 2, 8) when the num- N9 technigue. Especially, the modified minimum variance
ber of sources is tway = 2). In this work, we implement ~ P€amforming (modified MVBF) filteF; r1v [4] was used.

two techniques to get the reference signal for each different R-!
as

case. F.mv @ R-la, (21)
3.3.1. Time-frequency masking R = Q+1I (22)
Q = AIAH (23)

When there are two microphones, we utilize a basic bi-

nary masking technique such as that described in [7]. The|n the equtation described above, matfigenotes an unit
time-frequency mask is estimated using the sparseness ofnarix. The matrixA is constructed by the location vectors.
sources. We estimate DOA using phase difference betweenrne vectora, is the location vector corresponding to the

two observations. th source signal.
arg (Xi (w,t)) However, it is required to estimate the source localiza-
0 — arccos Xi(w:t) (i) (18) tion to utilize modified MVBF. The direction of arrival (DOA)
welr is estimated by using the information of separating matrix
We express microphone spaceraand speed of sound as ~ BI[2]-
in the equation above. The DOA histogram Itaslusters arg <B$,n(7,> )
and each cluster corresponds to one source. Using the av- 0 — arccos T (24)
erage DOAs of these clustefs, . . . , 5, we define a time- o we (P — rmr)
frequency maskBM;. We obtain the reference signal uti- ) ) i
lizing BM,. The ;ymbolrm is the location vector corresponding ite- '
th microphone.[-]* denotes the Moore-Penrose pseudoin-
BM(w.1) = { 1 Or—£<0<0,+&) (19 verse. We use mean valuefbés the DOA estimator.
’ 0 otherwise (20) The distance from microphone to sound source is not
) given yet, but we obtain the modified MVBF filter on the
Ri(w,t) = BMy(w,t) X;j(w,t) (j€1,.... M) assumption that the sound field is the near field. That is be-
In the equation (19), the symbglis an extraction range cause that the preliminary experiment shows that the speech
parameter. recognition performance does not depend on the assumption

Figure 3 depicts the process using the time-frequency of distance from microphone to sound source.
masking output as the reference signal. As a result of using the modified MVBF, we acquire
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Fig. 4. Diagram of proposed method using beamforming to 4.2.1. Analysis condition
make the reference signal.

4.2. Speech Processing

The STFT window is a Hamming window. Frame size and
] ) frame shift is 64ms and 8ms respectively. The separated
reference the signalusingF'; arv . signal in equation (8) and the reference signal are made up
under this condition.
Ry(w,t) = Fiyy(w)x(w,?) (25)

[Ri(w,t),...,Rs(w,t)]” (26)

-

—~
&

~

~
|

4.2.2. Methods for permutation

Figure 4 shows the diagram of the proposed method us-We evaluate two methods for solving the permutation prob-
ing beamformer output as the reference signal. lem; proposed method, method based on estimating DOA
[2].

The reference signal is obtained by two techniques; time-
frequency masking (when there are two microphones) and
) beamforming (when there are eight microphones). In this
We applied the proposed method to the double-talk recog-masking method, extraction range parameter in equation (19)

nition and evaluated under the condition where the numberiS set to ten degree. In the beamforming method, the lo-

4. EXPERIMENT

of sources is given. cation vectors in equation (23) are calculated at intervals
of five degree in the range of -90 to 90 degree. We as-
4.1. Experimental Setup sume that the distance from microphone to sound source is

150cm. The noise power parameter in equation (2i3)set
We recorded speech data to enable continuous speech recog- = ||Q|| x 0.03. The assumption of distance being unre-
nition. Sampling Frequency is 32 kHz. Quantization is 16 lated to speech recognition performance was already stated.
bits. The microphone array consisted of eight omni direc- We do not use the recorded transfer function to prevent de-
tional microphones. Array form was linear with consistent pendence on room acoustics. The confident parameter
spacing of 3cm. Figure 5 shows the recording condition. andg3 in equation (16) is 0.9 and 0.1 respectively. The pre-
The reverberation time (RT) can be changed to 240ms andiminary experiments shows that these parameters do not af-
320ms by drawing heavy curtains or not. The loudspeakerfect speech recognition rate.
arranged in front of the microphone array was the target  Additionally, we use a signal recorded with only the tar-
source. Another loudspeaker was the disturbance sourcegyet source as the reference signal. It is a cheating experi-
and was moved to vary experimental conditions. Evaluation ment to determine a true permutation as possible. We con-
data was recorded for a total of four different conditions. sider that this signal gives the ideal permutation alignment.
As for the target utterances, we selected total 100 sentences
spoken by 23 male speakers from ASJ-IJNASI8] continuous4_3_ Speech recognition
speech corpus. As for the disturbance utterances, we se-
lected speech data spoken by different male speakers fronThe parameters of the acoustic features are as follows. Acous-
ASJ-INAS. Each utterance was adjusted to almost the saméic features are 12-dimensional MFCC adFCC and
duration and energy. The SNR was almost 0 dB. Apower. Pre-emphasis is done with- 0.972~1. Frame
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Fig. 6. Results of continuous speech recognition in the caseFig. 7. Results of continuous speech recognition in the case
of using two microphones\( =2). (BM is time-frequency  of using eight microphones\{ = 8). (MVBF is modified
masking output and optimal is the signal recorded with only minimum variance beam former output and optimal is the
target source. Each thick bar represents the average recogsignal recorded with only target source. Each thick bar rep-
nition performance in two experimental conditions. Line resents the average recognition performance in two experi-
on the bar represents the maximum and minimum perfor- mental conditions. Line on the bar represents the maximum
mance) and minimum performance)

length is 25ms and frame shift is 10ms. Window function @chieved about 70 % word accuracy in double-talk recog-
is Hamming. The acoustic models are trained with 20 K Nition of 20 K vocabulary. From the comparison of the
sentences spoken by about 100 male speakers from ASJPOA-based method, the advantage of the proposed method
JINAS corpus. The training data is recorded with close-talk Was shown. Our proposal achieved 20% error reduction rate
microphones. The language models are trigram languagecompared with the DOA-based approach.
models using lexicon of 20 K vocabulary size. In this ex-
periment, the speech data is sampled at 32kHz, while the 6. REFERENCES
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