
CROSS PLATFORM SOLUTION OF COMMUNICATION AND VOICE / GRAPHICAL
USER INTERFACE FOR MOBILE DEVICES IN VEHICLES

Géza Németh, Géza Kiss, Bálint Tóth

Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics, Budapest, Hungary
{nemeth, kgeza, toth.b}@alpha.tmit.bme.hu

ABSTRACT

Two long-term goals of our research is to develop a
standardized communication interface between the mobile
device and other onboard systems and to create a
parametrical, scaleable user interface, both with voice and
graphical user input/output. This paper describes the main
requirements, principles and aspects of a voice/graphical
user interface and of a Bluetooth based communication
interface. Requirements and limitations for the
implementation of speech synthesis on mobile devices
will also be introduced. As a sample application of a
mobile device on a vehicle an SMS-reader application
will be presented.

1. INTRODUCTION

The abilities of smart phones and other kinds of mobile
devices were enhanced in the past few years. Mobile
phones and PDAs became communication centers with
the latest wireless technologies (InfraRed, Bluetooth,
WiFi, GPRS/EDGE/UMTS). In addition they also possess
numerous favorable features, like their increasing display
panel, which allows the development of informative and
intuitive user interfaces, and their quite satisfactory
performance, which enables the implementation of
complex calculations like speech synthesis or recognition,
and other advanced tasks. Mobile devices in the
automotive domain still have less importance, although
their advantages could also be used both in intra-car and
inter-car communication. In both cases an intuitive user
interface is necessary for Human-Computer Interaction
(HCI). In the automotive domain it is beneficial and
helpful to use speech output and input for basic tasks
(Speech User Interface, SUI) complemented with a
graphical user interface (GUI) for more complex
functions.

A vehicle may be the context or active partaker of
several kinds of communication: facilitator of personal
conversations, entertainment, it can receive
safety/emergency messages from another car or some

authority, give navigation information, diagnostics
messages, or parts of a multimedia car manual, etc.

Choosing standard mobile devices as HCI interfaces
seems to be the right choice for several reasons. The
phone is already a very personal device and a unique
identification and billing tool, with a lot of personal
information already stored (e.g. names, contacts,
calendars). It is owned and carried about by the majority
of people, which they also plug into the car’s audio
system upon entering. Therefore it is well suited to store
data for the car user interface also, which is useful
because users normally do not like to spend time changing
car settings and more than one person may use the car
regularly. In addition, a vehicle may be sold to another
owner several times during its lifetime. Items of the user
interface are language/country dependent, which setting is
likely to be the same as that set on the mobile.

The hardware limitations of mobile phones are quickly
being lifted, as phones with faster CPUs, more memory
and more advanced displays/speakers come out. These
devices are also more reliable than the average consumer
product.

It is also easier to integrate other channels of
information using mobile phones, e.g. the notifications of
a home alarm system. The board computer may also give
information to the phone which can help to reduce
cognitive load on the driver, so that an incoming call or an
SMS signal will not distract him/her during emergency
breaking or a quick steering-movement. Such cases are of
increasing importance as a consequence of more and more
information systems packed in cars.

 An argument against such use of mobile phones may
be that this way car manufacturers cannot keep the
interface in their own hands, sell less extras with the cars.
Still, they could award ‘Certified for (brand)’ labels to
phones that match their criteria (or different levels of
criteria for different types of certificates) and proved to
cooperate well with their automobiles, thus giving them a
way of controlling the development of such interfaces, but
leaving to the customer to buy a device with his/her
preferred price/performance ratio and to change it as (s)he
sees fit. Security issues may also arise, but these would

need to be taken care of by car makers anyway. It also
means that some engineering effort can be spared on
behalf of the car manufacturer, although some already
implemented hardware components would be abandoned
(e.g. car phone design).

Obviously it is not possible that all new cars come out
with such phone-interface integration possibility at once,
as we can see on the example of navigation systems,
which have existed for over 15 years but they are only
becoming wide-spread nowadays. The direction of
progress to follow is still to be decided. Several projects
work on establishing specifications for telematics, i.e. (in
the newer sense of the word) automation in automobiles
using software or hardware components. There are several
in-car software platforms, including the QNX Neutrino
real time operating system [1], Microsoft’s Windows CE
based mobile platform called “Windows Mobile for
Automotive” [2], different real-time Linux variants[3],
etc. AMI-C specifications [4] define a uniform set of
application programming interfaces (APIs) that enable
software developers to write applications that can operate
in vehicles. The hardware at present is usually some
embedded system, such as the Xilinx PLDs
(Programmable Logic Devices) [5].

In section 2 we discuss the possibilities of creating a
general interface between the vehicle’s board computer
and the mobile phone. In section 3, we look at issues
concerning the text-to-speech part of the SUI. In section
4, we demonstrate the described concept by depicting an
existing mobile phone application developed mainly for
use in cars.

2. GENERAL INTERFACE FOR MOBILE
DEVICES IN VEHICLES

To realize a personalized standardized communication
interface in the automotive domain, speech and graphical
user interfaces are required. From the automotive point of
view there must be a standardized communication
interface with different service classes and security
policies. From the mobile device point of view the same
communication interface should be integrated, and
standardized speech and graphical user interfaces are
required. Speech input and output are basic aspects of
human machine interaction in cars, as it is dangerous and
forbidden in many countries to control by hands and
supervise by eyes personal communication devices while
driving.

The aim of the present paper is to investigate both
sides in order to define what is required to develop and
implement such a system.

2.1. Automotive domain
In the car the following four main points should be
considered:

2.1.1. Sensors and actuators
Sensors measure the actual value of a parameter. The
parameter can be boolean (e.g. back seat is leaned) or
integer (e.g. volume, temperature, maximum speed) type.
Actuators react to human interactions, for example set the
preferred position for the driver’s seat.

There can be two ways for the (preferably wireless)
input and output communication of sensors and actuators
with the user interface:

a) All the sensors and actuators are wireless (e.g.
Bluetooth capable) and they communicate
directly with the user interface system. In the
case of this solution less wire is needed, although
for power supply at least one wire is still
required. Furthermore, some systems (e.g.
Bluetooth 1.1) employ serial communication,
consequently the personalized communication
device should connect sequentially to all the
sensors and actuators, and in addition this
solution is expensive.

b) A much better solution is when all or most

sensors and actuators are connected via wires to
a wireless control center, which communicates
with the personalized user interface device. The
centralized control of sensors and actuators
makes the system extendable, as it will be
described in 2.1.4. The major disadvantage is
that more wires and a control center are required.

2.1.2. Service Classes
In order to make the system scaleable and usable on
different types of cars with different features, service
classes should be implemented. Basically service classes
are divided into two categories: input and output services.
This separation is required, as input and output can be
realized with different methods (e.g. input with the
buttons on the steering wheel and speech output).
Furthermore, there are different types of services classes,
like temperature, seats, Hi-Fi, speed, etc. Service classes
have also sub-classes (e.g. seats service class has three
subclasses: front right, front left, back seat). It is defined
in every car which service classes are supported so as to
know what kind of functions you can control using the
personal communication interface.

2.1.3. Security Policy
Different security levels must be defined to prevent the
users from reaching service classes in different situations.
Basically we have to distinguish three situations: car is not
in use, startup and driving. At least one security level
must be defined for all the service classes either to allow
or to ban the user from reaching it. For example the
driver’s seat position can be changed while the car is not

in use or during startup, but should not be changed while
the user is driving.

Service classes and the rules of security policies may
be included in an XML description file. This way new
service classes and different security policies can be
defined during software update.

2.1.4. Standardized Communication
There are doubts about using wireless (e.g. Bluetooth) in
cars, as the lifetime of a car series is about 15-20 years,
but we cannot suppose that any given technology will
exist in mobile devices so long. It is possible that in 5
years a new technology will replace for example
Bluetooth, just as Bluetooth has substituted wired and
infrared communication in several situations.

To solve the problem, the control center must have a
standardized communication interface. The interface
should be independent from the physical medium (e.g.
Bluetooth). This way if a new physical level
communication standard emerges, only the
communication interface and the control center should be
upgraded.

Sun’s JINI environment [6] realizes a dynamically
distributed system that makes the handling of sensors and
actuators safe and simple; the Service Classes and the
Security Policy can be included, and the communication
interface layer can also be realized with JINI. JINI is used
in the previously mentioned AMI-C environment, which
can be a possible solution for standardized in-car control
centers in the future.

2.2. Mobile device domain
Mobile devices should use the same communication
interface as the control center. To make the personalized
communication interface widely applicable, it must be
supported by many devices. Apart from communication, a
standardized speech and graphical user interface is also
required. Unfortunately a lot of mobile devices do not
have public Software Development Kits (SDKs), but for
example most Symbian OS [7] and Microsoft Windows
Mobile based devices do have it. These smartphones and
PDAs are widely reachable and are rather cheap. In
addition the development for these devices is similar to
the development on desktop computers. Additionally,
these smart devices have enough computing power to
calculate complex algorithms, like speech synthesis and
even recognition with limited vocabulary. The devices
have rather large, color display panel, which enables the
development of intuitive graphical user interface.

Unfortunately even the two above mentioned mobile
operating systems are not compatible with each other. In
addition, new systems can also be released anytime.
Consequently, standardized graphical and speech user
interface is required.

2.2.1. Standardized Graphical User Interface
The user interface should be rendered in runtime
according to a description file. The description file
includes the user controls (combobox, checkbox, buttons,
pictures, etc.), the their position and the action that is
performed when the user activates them. The description
file is realized in XML (eXtended Markup Language)
structure. The idea is similar to the HTML (Hyper Text
Markup Language), but there are three main differences:

1) The Speech User Interface is also included in the
description file (see 2.2.2.).

2) Functions of the source code (e.g. C++, C#,
JAVA) can be called if the user activates a
control.

3) The user interface XML definition file can be
subdivided into service class, security policy, etc.
sections.

There is an existing solution for the first aspect (i.e.
VoiceXML [8] , and there are also tools that realize the
second feature, but these technologies are not supported
by mobile devices. There are some features that are
supported by Windows Mobile (e.g. ASP.NET for
Mobiles), but these are not supported by Symbian OS
based phones and vice versa. Furthermore the third aspect
given above is a very important part of automotive-mobile
control and supervision. It should be also implemented in
the user interface definition file.

Let us give a simple example for the XML
description of a user control in Figure 1:

<UserControl Name=”myTextBox” Type=”textbox”
ServiceClass=”Temperature” Size=”120px” Posx=”10”
Posy=”5” Input=”keys” Input=”voice” Output=”GUI”
Output=”SUI” Action=”setTemperature”
Security=”All”>Please define the in-car
temperature</UserControl>

Figure 1. XML Definition file example

In this case a 120 pixel wide textbox is rendered at (10,
5), it belongs to the Temperature Service Class, the value
can be set with the keys of the mobile or with voice and
Security Policy allows users to set the value anytime. The
actual value is represented both vocally and graphically. If
the value changes, the setTemperature function is called,
and the initial content of the textbox is “Please define the
in-car temperature”.

2.2.2. Standardized Speech User Interface
It is dangerous and in most countries it is also forbidden
to control and supervise the mobile device while we are
driving. To make the usage of the mobile device safe, a
speech user interface is required. The input is realized by
speech recognition, and the output is produced by speech
synthesis.

User independent speech recognition should be used,
as the training process of user dependent recognizers

frustrates drivers and they can easily loose their
motivation for using the speech input. The performance of
the latest mobile devices is too low for continuous speech
recognition, and in case of large fixed vocabularies the
calculation time also dramatically increases. If the speech
recognizer vocabulary at any time is not more than 150-
200 words or phrases, the speed and accuracy of
recognition may be satisfactory. In the automotive domain
this amount may be enough, if in a well designed,
intuitive dialog system the number of elements in the
vocabulary can be decreased.

Speech generation provides the vocal output of the
system. It should inform users about the actual values
measured by the sensors, about the possible words and
phrases that can be recognized, it should read information
messages, etc. Besides unlimited vocabulary Text-To-
Speech (TTS) which is of limited quality, specialized very
high quality subsystems for well defined topics (e.g.
numeric values, dates, etc. [9]) should also be
implemented. Users are used to getting very high quality
audio from the car speakers and they are not interested in
the technical difficulties of speech generation.

Unfortunately Microsoft’s SAPI (Speech Application
Programming Interface) and VoiceXML are currently not
supported by mobile devices, consequently, a
standardized speech I/O system should be defined, which
runs on all major mobile device platforms. Speech
generation/synthesis engines should be recompiled for
different processors (ARM, RISC, MIPS, etc.) but the
speech user interface is to be realized according to the
definition file, which was shortly introduced in 2.2.1. Also
a subset of VoiceXML may be used in the definition file
as long as VoiceXML is not supported in mobile devices.

The graphical and the speech user interface have to
handle service classes and security policies. For example
users are able to roll the windows, but are not allowed to
control breaks with the user interface. This restriction is
required because for example the noise of the
environment may influence speech recognizer accuracy
and it can be dangerous, if a word or phrase is
misrecognized as another command. The same “error”
occurs, if the user pushes wrong buttons.

3. SPEECH SYNTHESIS IN MOBILE DEVICES

As user interfaces get more and more complex, tailoring
becomes necessary so as to keep the interface as simple as
possible, but not too simple, i.e. giving the user easy
access to all necessary functions. Speech I/O is an
enabling technology for these ends.

Speech generation already has a wide range of
solutions. The limitations, coming from the mobile phone
environment, reduce this scale considerably. Simply put,
those solutions may have a chance to be integrated into a
mobile phone that have low memory requirements and

need small processing power. The development in the last
decade showed that good speech quality and the above-
mentioned technical limits are in contradiction to each
other. The need to resolve this contradiction makes it
difficult to integrate speaking systems into mobile phones.

Speech synthesis is always a compromise between
good speech quality and the technical demands of the
application. In the case of mobile phones this compromise
is much stronger than in other application environments.
For reading simple predefined messages limited
vocabulary solutions are sufficient, for general text
reading unlimited text readers of lower perceived quality
are needed. A compromise between the two is domain
specific synthesis.

3.1. How to port speech synthesis on a phone platform

Developing a text-to-speech engine for mobile devices is
very similar to the development of a TTS for the old
operating system, DOS. It did not support TTS; there was
no operating system level interface between the
application and the TTS engine, like SAPI, which is
present in Microsoft Windows. Up to now the situation
has been the same on mobile devices: the operating
system does not support TTS, SAPI is not present.
Therefore every application that uses text-to-speech must
contain a text-to-speech engine as a dynamic (.DLL) or as
a static (.LIB) linked library. The lack of SAPI prevents
developers and companies from creating speech-enabled
applications because they cannot depend on the operating
system providing them with a text-to-speech engine that
they could use; consequently, the license of a TTS engine
for mobile devices must always be bought resulting in
increment of the development and of the final product
costs. Furthermore, multilingual support cannot be
realized well on mobile devices. Usually different
languages have different TTS engines. As long as there is
no standardized, operating system level speech I/O, it is
impossible to add or remove a language from an
application without modifying it.

Mobile devices are getting better and better, but they
still have moderate performance and storage size
compared to the desktop computers and servers of the
day. The high quality database of text-to-speech systems
is too large for many devices, and most text-to-speech
software available on the market do not support mobile
devices well. Building robust multilingual support in a
mobile device also requires very large storage size and
TTS engine(s) that support(s) all the required languages
(very few languages are supported by TTS systems on
mobile phones yet). Furthermore, client side applications
cannot be charged according to their usage by mobile
companies. Therefore, in some cases it is worth solving
the text-to-speech conversion required by the client (a
mobile device) in a server.

As Figure 2 shows, the mobile client sends the text to
be read with some additional flags (language, quality and
character of the voice, speed of reading, etc.) to the server
via a data communication channel (e.g. GPRS, EDGE,
UMTS, etc.). The server selects the appropriate TTS
according to the language flag and feeds in the text
together with the flags. The TTS generates a byte stream
or a raw audio file, which is sent back to the client via the
previously used data communication channel. The client
buffers the incoming stream, and plays it. It is worth using
some audio compression method to make the size of the
byte stream as small as possible. 8000 Hz sampling
frequency and 16 bit quantization are typically enough for
mobile applications, as long as the device does not have a
high quality speaker. This solution can be used for
software upgrade and other data exchange purposes as
well.

Figure 2: Client-server TTS implementation

Although a subset of SAPI 5.0 exists for Windows CE

from version 4.2, there is no standard text-to-speech API
for Symbian. Several companies claim to have developed
TTS systems for Symbian with proprietary programming
interfaces. One way to construct a TTS for Symbian is to
design a TTS interface and then create dynamic link
library (DLL) with this interface that will contain the TTS
synthesis engine. If there is a synthesis engine
implemented in standard C, there is no need to rewrite it
to use Symbian-specific functions because the standard
library has been implemented for Symbian as a static link
library. The released application needs to have a Unique
Identification (UID) number assigned to it. This number
can be obtained from the Symbian Developer Network
from a centrally administrated database.

3.2. Limitations and possibilities offered by phone
resources

We are getting used to the fact that the storage and
computing capacity of desktop computers means
practically no limitation for the average applications run

on them. Until recently, this was not the case with phones
that are capable of running external (independently
developed) applications, but the situation seems to be
changing.

Phones have two different kinds of memory: internal
memory for the operating system and for running
applications, and possibly external memory (memory
card) used for storing data only. The size of the internal
memory means a kind of restriction on the program size,
but the size of this memory is rapidly increasing as newer
phones come out on the market. (older Symbian phones
had 4 to 8 MBytes of internal memory; today one can buy
phones with 64 MBytes or more of internal memory and 1
GByte or more of external memory.) The speed of phone
processors (generally ARM® or Intel XScale® RISC
processors) is also rapidly increasing, although it is
restrained by size and low power consumption
requirements.

Even though the limitations on storage and computing
are beginning to be lifted, it is worthwhile optimizing
programs for speed and memory consumption in order to
get short response times and enabling simultaneous
applications on the phone. Besides, extensive use of the
processor means increased power consumption and
reduced standby time. One way to achieve this is to keep
as much application data in files (which are also stored in
memory) as possible instead of loading them to the
operative memory. This way one can avoid having them
duplicated (one instance as a file and another instance in
operative memory) although it can result in slightly
slower operation because of the somewhat slower speed
of external memory. Note that profiling the code on a
desktop computer may give bad clues on what needs
optimizing, as different processors execute the same code
with quite different speeds.

From the viewpoint of TTS, there are three possible
outputs: the speaker of the phone, the network and the
headset or loudspeaker. The quality of these is also getting
better, partly because of the new expectations toward such
devices, like the ability to play mp3 files. 22 kHz or even
higher sampling rates are already supported. Still, it is
advisable to keep the TTS sampling rate at a lower rate,
e.g. 8 kHz (traditional phone quality), because doubling
the sampling rate practically means doubling the
computation time.

4. A SAMPLE APPLICATION: SMSRAPPER

Short Message Service (SMS) is a very simple, effective
and economical method of GSM communication. We
cannot forget, however, that in certain situations handling
of these messages becomes difficult. Today, initiating or
receiving a phone call is possible without dialing the
actual number (one-touch dialing, voice-dialing,
automatic call reception). But we must – in all cases –

open and read through all our incoming messages word-
by-word. This is especially dangerous while driving or
while crossing the road in heavy traffic on foot, as we lose
contact with our surroundings for seconds. Focusing at a
nearby object wastes even more seconds from the
recognition of an emergency. There are other situations as
well when chances for reading the screen are limited.

The solution is speech synthesis (see Figure 3). The
SMSRapper  application developed jointly by BME
TMIT and M.I.T. Systems Ltd. in Hungary is, to our
knowledge, the world’s first application product that runs
on Symbian phones and reads the incoming messages
aloud according to the user’s preferences. At the time of
writing the technology is available for Hungarian,
German, Polish and Spanish. It is already being used by
the subscribers of T-Mobile Hungary. It is possible to use
it both through the hands-free function of the phone or
though a Bluetooth connection to the car audio system.
The car can be adapted to a new user just by placing
his/her phone inside.

Figure 3. In-car application of an SMS-reader

The application has several settings associated with the
phone’s profiles (general, in the street, negotiations,
silent, etc.) each of which has a default value appropriate
for most users, with different behavior in each profile. For
example, one can set how fast, how loud and how many
times (s)he wants the program to read the message and
which properties (s)he wants to hear (e.g. sender, date,
time), separately for every mode. Voice with the
associated language can be chosen for announcing
messages. Language identification from the SMS text can
be turned on or off. A time interval can be specified
during which the phone, so as not to disturb e.g. your
night’s rest, does not read messages. It can be specified if
SMSrapper is to be brought into the foreground when a
message arrives.

When an SMS arrives, the program identifies the
sender of the message based on the phone-number if it is
in the phone’s address book and reads his/her name; if

not, it reads the number. The language of the message is
made known to the user before it is read and this language
is chosen for reading the text if it is available; otherwise
the default language will be used.

Feedback from users of SMSrapper showed that other
features are also needed for a more convenient use. When
you drive your car, you may not want the device to
automatically read out certain texts, e.g. highly
confidential business information. Such messages usually
come from certain acquaintances of yours, so you may
want to put them on a “black-list” which contains the
address-book entries whose messages are never to be
read. At the same time, you may want that messages from
other persons (maybe family members) be read out even if
the phone is in silent mode, and put them on the “white-
list”. A further option is a “grey-list” if you want to be
notified about someone’s SMS but do not want it to be
read aloud. Another extra feature that fits into the
application’s scope is reading the name of the caller
before ringing starts. This way setting (and remembering)
personal ringtones, or recording the person’s name as a
ringtone, can be spared.

5. CONCLUSION

Within the scope of this paper only a basic sketch of
the possible advantages of a standardized integration of
mobile devices into vehicles could be given. The authors
are open to future co-operation with interested partners in
order to more deeply explore this domain.

6. REFERENCES

[1] S.Ethier and R. Martin, ”Instant-on Technology for In-Car
Telematics and Infortainment Systems”, http://www.qnx.com/
download/download/10386/instant-on_mini-
driver_whitepaper.pdf
[2] Edward Lansinger, "Windows Mobile for Automotive: A
Platform for Smart Telematics Systems”, Convergence 2004,
Detroit
[3] http://www.realtimelinuxfoundation.org/
[4] Scott J. McCormick, “AMI-C (Automotive Multimedia
Interface Collaboration) Fostering Global Communication”,
ITU-T Workshop on Standarization in Telecommunication for
motor vehicles, ITU Headquarters, 2003.
[5] K.M. Parnell, “Reconfigurable Vehicle”, http://www.
xilinx.com/products/iq/ReconfigurableVehicle02AE-118.pdf
[6] Jini Network Technology, http://www.sun.com/software/jini
[7] http://www.symbian.com
[8] Voice Extensible Markup Language, v.2.1,
http://www.w3.org/TR/voicexml21/
[9] G. Olaszy, G. Németh, “IVR for Banking and Residential
Telephone Subscribers Using Stored Messages Combined with a
New Number-to-Speech Synthesis Method“, in D. Gardner-
Bonneau ed., Human Factors and Interactive Voice Response
Systems, Kluwer, 1999, pp. 237-255

