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ABSTRACT 
 
A computational complexity reduction method in a 

noise reduction algorithm using ICA [1] in car 
components is described. We examined a noise 
suppression system and a speech enhancement system that 
use frequency-domain independent component analysis 
(hereafter “FDICA”) in car compartments with speech 
input systems [2, 3]. To achieve real-time processing in a 
car, we must reduce the computational complexity. We 
solved this problem with real-time processing by 
controlling the adaptive timing.   
 

1. INTRODUCTION 
 
Car compartments with speech input systems have been 

used for mobile phones and speech recognition systems. 
Because various noise sources exist inside car 
compartments, the system needs to eliminate noises in 
equipment that uses a speech input system. We have to 
consider two points, performance and compatibility, to 
create a successful car compartment system. 

The ability to maintain the tone quality of mobile 
phones and that of improving the accuracy of speech 
recognition are related to performance. Customers require 
noise suppression while tone quality is maintained. In 
addition, an improvement in speech recognition accuracy 
resulting from better noise suppression is necessary for 
these systems. Therefore, we need good algorithms for 
both noise rejection and tone quality for real-time use. 

Compatibility requires that special adjustments are not 
needed at the time of system importation of a unit bought 
from a supplier, a microphone, a speech recognition 
system, or a mobile phone. For instance, a nonlinear 
processing noise reduction method such as spectral 
subtraction (SS)[4] is often buried in a speech recognition 
system. In this case, a system that is compatible with the 
SS of other parts is needed. To solve these two problems, 
we examined a noise reduction system located in the  

Fig. 1: Speech input system in automobile 
 
front part of a mobile phone and a speech recognition 
system (Fig. 1). 

In addition, frequency domain independent component 
analysis (FDICA) was applied to create an algorithm at 
the center of the noise reduction system. The performance 
of the frequency-domain ICA, which separates the sound 
source, is extremely high. Moreover, since it is a linear 
system, it has high compatibility with non-linear systems 
like those for spectral subtraction. 

However, operating it in real time is difficult because of 
the enormous computational complexity. Therefore, we 
think that reducing computational complexity is one of the 
targets for operating frequency-domain ICA in real time. 
Consequently, we have been working on the following 
problems. 
1. Removing calculation redundancy in the time domain 
2. Removing calculation redundancy in the frequency 

domain 
3. Optimizing parameters 
4. Optimizing software 

In this paper, we examine an algorithm that removes 
the calculation redundancy in the time domain.    

In Section 2, we explain the FDICA algorithm used in 
our work.  

In Section 3, we explain the procedure of the system for 
executing filter adaptation processing, which is done only 



when the characteristics of the car compartment noise 
change: we call this a rough adaptive filter concept (RAF).  

In Section 4, we examine the conditions of continuous 
noise that cause speech recognition rate changes. 

In Section 5, we evaluate the speech recognition rate 
under the condition of executing filter adaptation for 
utterances and the condition of executing filter adaptation 
only when the characteristics of car compartment noise 
change, and compare the results. 
 
2. FREQUENCY-DOMAIN ICA ALGORITHM 

 
In this study, a straight-line microphone array was 
assumed. The number of microphones was K, and the 
number of multiple sound sources was L. In FDICA, a 
short-time analysis of the observed signals was first 
conducted in a frame-by-frame discrete Fourier transform 
(DFT). By plotting frame by frame, we determined the 
spectral values of each microphone input in a frequency 
bin, namely, sub-bands, as a time series. We designate the 
time series here as X(f,t)=[X1(f,t), … , XK(f,t)]T.   
Next, we performed signal separation using the complex-

valued inverse of the mixing matrix W(f)(f) so that the L 
time-series output Y(f)(f,t)=[Y(f)

1(f,t),…, Y(f)
L(f,t)]T became 

mutually independent. This procedure can be given as 
),()(),( )()( tfftf ff XWY =  (1) 

We performed this procedure with respect to all sub-bands, 
f. Finally, by applying the inverse DFT and the overlap-
add technique to the separated time series, Y(f)(f,t), we 
reconstructed the resultant source signals in the time 
domain, Y(f)(t).  
 In conventional FDICA, the optimal W(f)(f) can be 
obtained using the following iterative equation.  
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where <･> denotes the averaging operator, i is used to 
express the value of the i-th step in the iterations, H is the 
Hermitian transpose,  η is the step-size parameter, and Φ 
is the nonlinear vector function such as a sigmoid function. 
Thus, the separation filter can calculate equations (1) and 
(2) repeatedly. 
 

3. ROUGH ADAPTIVE FILTER CONCEPT (RAF) 
 
In conventional FDICA, the system learns the sound 
source separation filter at the start, and separates the 
sound source afterwards using the adapted separation 
filter described in Fig. 1. In this system, the learning 
process is always begun immediately after the user inputs 
some speech command. To achieve real-time processing, 
both the additional time spent on learning processing and 
the time spent on filtering processing have to be 
performed in real time (Fig. 2). 

 

 
Fig. 2:  Block diagram of conventional method 
 
 

 
Fig. 3:  Block diagram of our method 

 
The noise separation capability of FDICA can achieve a 

speech gain recovery of about 5-15 dB with a two-
microphone array system. However, the computing time 
spent on filter adjustment ranges from 10 seconds to a few 
minutes. Currently, most of the computing time is spent 
on processing for the filter adaptation, and little time is 
spent on the computing for filtering the speech signal. To 
make the system rapid, we thought that excluding the 
processing for the filter adaptation executed every time 
the user uttered something would be effective.  

As one example, we showed a system that studied the 
sound source separation filter by background detection of 
the change in the noise from the controller area network 
(CAN) signal in Fig. 3.  

First, the system records the noise when a change in the 
noise is detected with S4 (Fig. 3), and it adds to the clean 
speech signal maintained beforehand at B4 (Fig. 3).  

Second, the filter adaptation to the background begins 
in S5. When the study ends, the system replaces sound 
source separation filter S2 with the newly adapted filter. 
Thus, if adapting the filter for each utterance is 
unnecessary, the filter can be adapted every time the noise 
changes, making processing in the background possible 
and enabling our target to be achieved. Therefore, we set 
up a hypothesis stating that changes in short-term noise in 
the car environment do not lead to changes in the 



characteristics of the filter. We test this hypothesis in the 
next section. 
 

4. CAR NOISE SELECTION 
 
 From the viewpoint of the time aspect and noise 
detection, the noise generated in the car compartment can 
be divided roughly into discrete noise and continuous 
noise. The state is changed into discrete noise by a switch 
operation such as for the air conditioner, wipers, and 
blinkers.  

Constant-speed running noise and 
acceleration/deceleration running noise, on the other hand, 
exist as continuous noise. This can be used to predict 
changes in noise, for example, the car speed pulse.  

In continuous noise, the load on the system in a running 
condition increases because the filter has to adapt to this 
whenever the noise changes. In this section, we describe 
our investigation of the performance variation in a speech 
recognition system on the market that is caused by the 
speed of a car, and we reveal our decision on the interval 
required for learning about continuous noise. 
 
4.1. Experimental procedure and conditions 
 

We investigated the speech recognition rate under a 
variety of running environments concerning car velocity 
and acceleration/deceleration. The work was performed 
according to the following procedures. 

 
Step 1:  Noise recording 
 
Two microphones were set up in the car compartment 

(Fig. 4). The car was operating while repeating 
acceleration and deceleration during ordinary driving on a 
proving ground that assumed urban operation. In addition, 
vehicle interior noise N was collected intermittently in 
ten-second intervals. In addition, the level of the car speed 
and the degree of acceleration/deceleration were given as 
sound data. We preserved the data in a file. The sampling 
frequency was 48 kHz, and the quantization rate was 16 
bits. After all the data was collected, we sampled it up to 
11.025 kHz. 
 

Step 2: The noise was plotted as based on speed and 
acceleration.  
 
Step 3: Making speech test set 
 
Three speech test sets for evaluating 300 utterances per 
set were made using noise N, which had been collected 
with the microphone nearest the driver of the 2-ch 
microphones.  

 
Fig. 4:  Arrangement of microphones 

 

 
Fig. 5:  Classification of noise 

 

 
Fig. 6: Decision on evaluated clusters  
 

The utterances that were collected in a soundproof 
chamber beforehand, as well as a transfer function, were 
used from the driver’s utterance position to the 
microphones. 

Three hundred utterances were selected at random from 
the utterances made by 17 men and 5 women. 
 
Step 4: Calculation of speech recognition rate 
 



The speech recognition rate was measured for the speech 
test sets of each noisy environment condition made in 
Step 3. The recognition decoder used VORERO Ver.4.3 
[5], which has spectral subtraction. The system has a 
language dictionary that waits for 69 isolated words at the 
same time. 
 

 Step 5: The speech recognition rate evaluations of 
constant speed operation and acceleration operation were 
compared. 
 
Step 6: The recognition accuracy was compared at 
different vehicular speeds. 
 
4.2. Classification of noise and setting of experimental 
conditions 
 
 Using the car velocity and acceleration/deceleration 
degree (Fig. 5), 545 noise files were classified. The x-axis 
shows the velocity from 0 to 70 km/h, and the y-axis 
shows the acceleration from -3 to 5 2/ sm . Here, a 
negative value shows deceleration. It should be noted that 
most noise files were included within the range from -2 to 
2 2/ sm . 
    Figure 6 shows the noise file used for the evaluation. 
We selected the acceleration range from -0.56 to 0.56 

2/ sm  as the constant speed area, and chose another range 
(under -0.56 2/ sm and over 0.56 2/ sm ) as the 
acceleration area. In addition, we chose four speech 
recognition evaluation areas to investigate steps 5 and 6. 
We compared a 40 km/h constant speed area (Sc1: 22 
speech test sets) and a 40 km/h acceleration area (Sa1: 23 
speech test sets). Then, we compared a 60 km/h (Sc2: 13 
speech test sets) constant speed area and a 60 km/h 
acceleration area (Sa2: 8 speech test sets) as experimental 
conditions, all for Step 5. Similarly, we compared a 40 
km/h constant speed area (Sc1: 22 speech test sets) and a 
60 km/h constant speed area (Sc2: 13 speech test sets) as 
the experimental conditions of Step 6. 
 
4.3. Speech recognition rate 
 

Figure 7 shows four recognition results in the speech 
recognition evaluation area. The vertical axis shows the 
speech recognition rate, and the four-bar chart shows the 
average speech recognition rate of three speech test-sets in 
each evaluation area. The beard that accompanies the bar 
chart shows the maximum and minimum values of the 
voice recognition rate of the object area. 
 

 
Fig. 7:  Speech recognition rate 

 
4.4 Comparison  
 
4.4.1. Results of Step 5 
 
We tested the hypotheses "The mean value of the 

recognition rate under a constant speed running condition 
(Sc1, Sc2) and the acceleration/deceleration running (Sa1, 
Sa2) were equivalent" by using a t-test. Expressions (3) 
and (4) are the results of calculating the p value by using 
the t-test of MS Excel. 

05.013.0)1,1( >=SaScp                   (3) 
05.049.0)2,2( >=SaScp                  (4) 

In both cases, the hypothesis could not be dismissed 
according to the results of expressions (3) and (4). 
Therefore, we judged that the speech recognition rate 
under the constant speed running and the speech 
recognition rate under the acceleration/deceleration 
running are the same. 
 
4.4.2. Results of Step 6 
 
Similarly, we tested the hypothesis "The mean value of 

the recognition rate under the 40 km/h constant speed 
running condition (Sc1) and the 60 km/h constant speed 
running condition (Sc2) were equivalent" by using 
another t-test.  

05.011.0)2,1( >=ScScp                   (5) 
In this case, the hypothesis also could not be dismissed 
according to the results of expression (5). Therefore, the 
speech recognition rate under the 40 km/h constant speed 
running and the speech recognition rate under the 60 km/h 
constant running speed were judged to be the same.  
    In addition, we double-checked this investigation for 
the speed of the car at several points. However, a 
significant difference was not detected between 20 and 60 
km/h under an urban running environment.  
 
4.5 Discussion  
 
 From the investigation in Section 4, we understood that 
the recognition performance is equal under an urban 
running environment in a car using a speech recognition 



system with spectral subtraction. However, we estimate 
that similar results will not necessarily be obtained for an 
idling state and high-speed transit-time.  
  Therefore, we examined three conditions of idling, 60 
km/h constant running speed, the top speed of urban 
driving under Japan-domestic regulations, and 100 km/h 
constant running speed, which is the top speed for 
expressways under Japan-domestic regulations. 
 

5. DETERMINATION OF ADJUSTMENT 
BEGINNING TIME 

 
We evaluated the speech recognition rate of the speech 

after FDICA processing using three techniques: a) a 
conventional method of processing filter adaptation at 
each utterance, b) another conventional technique 
involving processing filter adaptation only when either the 
speaker or noise changes, and c) our method of processing 
filter adaptation only when the car compartment noise 
changes. We then compared the results. In this experiment, 
nine environments for which the noise would change were 
assumed. 

 
5.1. Experimental conditions 
 
5.1.1. Making test-sets 
 
Two microphones were set up in the car compartment 

(Fig. 4), Three kinds of interior vehicle noises N1 were 
collected under the conditions of idling and 60 and 100 
km/h constant running speeds. Similarly, two interior 
vehicle noises N2 at air conditioner level two and air 
conditioner level four were collected in a semi-anechoic 
chamber. Three speech test-sets for the evaluation of 300 
utterances a set were made by using noises N1 and N2; 
the utterances were collected in a sound-proof chamber 
beforehand, and the transfer function (from the driver’s 
utterance position into two microphones). Approximately 
300 utterances were selected from the utterance data of 17 
men and 5 women at random. The microphone interval 
was 4 cm, the sampling frequency when collecting was 48 
kHz, and the quantization bit rate was 16 bit. All data was 
down sampled to 11.025 kHz after it was all collected. 
 
5.1.2. Sound source separation processing 
 
We separated the sound source of the test set made as 
described in Section 5.1.1 by using the algorithm shown 
in Section 2. The filter length was 1024 points, the frame 
shift length was 256 points, the learning iterative 
computation was 200 times, and the sound source 
direction initial value was 0 and -60 degrees. In a), the 
technique for processing filter adaptation at each utterance, 
the system adapted to the filter 200 times at each utterance 
and separated the speech by using the generated filter.  

 
Fig. 8:  Speech recognition rate 

 

 
Fig. 9:  Speech recognition rate 

 

 
Fig. 10:  Speech recognition rate 

 
In b), the technique for processing filter adaptation only 
when either the speaker or noise changes, the system 
adapted to the filter 200 times only when the speaker or 
car compartment noise changed, and it separated the 
sound source by using the generated filter. In c), the 
technique for processing filter adaptation only when the 
car compartment noise changes, the system adapted to the 



filter 200 times only when car compartment noise 
changed, and it separated the sound source of all speech 
test sets by using the generated filter. 
 
5.1.3. Calculation of speech recognition rate 
 
The recognition decoder used VORERO Ver. 4.3 [5] that 

had spectral subtraction. The language dictionary waited 
for the 69 isolated words at the same time. We calculated 
the speech recognition rate for three speech test sets in 
each noise condition. 
 
5.2. Results 
 
Figure 8 presents the evaluation results of the speech 
recognition rate at each velocity when the air conditioner 
was not used. The vertical axis shows the speech 
recognition rate, and the 3-bar chart shows the average 
speech recognition rate of three speech test sets in each 
velocity condition. The bar chart for each noise condition 
shows all three techniques, including our method.  

In all cases, the speech recognition rate of the speech 
processed by FDICA showed hardly any improvement. 
We think that the engine noise and road noise do not 
necessarily come from a specific direction. The FDICA 
suppresses only the sound from a specific direction. 
Therefore, the effect of sound source separation is not 
sufficiently reflected in diffusive noise, such as that of the 
engine or road. In addition, there was little difference 
between the adaptation techniques. 

Figure 9 presents the evaluation results of the speech 
recognition rate at each speed with air conditioner level 
two. The condition concerning the display is the same as 
in Fig. 8. 

In the 60 and 100 km/h constant running speeds, the 
speech recognition rate after FDICA processing improved 
to about three points. We think that the noise coming from 
the air conditioner duct was suppressed by FDICA. In 
addition, we once again found little difference between 
the techniques. 
  Figure 10 presents the evaluation results of the speech 
recognition rate at each speed with air conditioner level 
four. The condition concerning the display is the same as 
in Fig. 8. In the idling and 100 km/h constant running 
speed conditions, the speech recognition rate after FDICA 
processing improved to about 12 pts from 15. We think 
that the noise coming from the air conditioner duct was 
suppressed by FDICA, as in Fig. 9. In the case in which 
the speech recognition rate was greater than in Fig. 9, we 
found the reason to be that the sound pressure level of the 
air conditioner noise was high, and the noise reduction 
rate by FDICA also increased. However, in the 60 km/h 
constant running speed condition, we found about a 10-pt 
decrease in the speech recognition rate after FDICA 

processing. A further investigation revealed this to be a 
filter divergence caused by over-learning. 

In this condition, there was little difference between the 
techniques 
 
6. DISCUSSION & CONCLUSION 
 

Section 5.1 showed two findings. One is that the speech 
recognition rate can be improved by using FDICA when 
the direction of the speech is clear and noise of a high 
level is included. At this time, FDICA functioned 
extremely well under an environment where the engine 
noise and road noise were included as diffusive noise. 

The other finding is that the performance equal to a 
conventional technique was obtained even when the filter 
was adapted when the noise changed in various car noise 
conditions. These results show that a performance equal 
to that of the conventional technique was obtained even 
when the adapted filters were switched according to 
changes in the noise condition. That is, when a driver 
gives a speech command, the speech only needs to be 
filtered by using fixed filters. Operation in real time is 
possible merely by filtering the speech signals. 
Consequently, we were able to clarify the real-time 
operation of the noise reduction system, one that uses 
frequency-domain ICA.  
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