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ABSTRACT

In this paper, drivers’ characteristics in driving behaviors
are extracted through spectral analysis of driving signals.
We assume that drivers’ characteristics while accelerating
or decelerating can be represented by “cepstral features”
obtained through spectral analysis of gas and brake pedal
operation signals and the cepstral features of each driver are
modeled with a Gaussian mixture model (GMM). Driver
models are evaluated in driver identification experiments
using driving signals of 276 drivers collected in a real
vehicle on a city road. Experimental results show that
the driver model based on cepstral features achieves a
76.8 % driver identification rate, resulting in a 55 % error
reduction over a conventional driver model that uses raw
gas and brake pedal operation signals.

1. INTRODUCTION

The numbers of driver’s license holders and car owners
are increasing every year, and the car has obviously be-
come indispensable to our daily life. To improve safety
and road traffic efficiency, intelligent transportation sys-
tem (ITS) technologies including car navigation systems,
electronic toll collection (ETC) systems, adaptive cruise
control (ACC), and lane-keeping assist systems (LKAS)
have been developed over the last several years. ACC
and LKAS assist drivers by automatically controlling ve-
hicles using observable driving signals of vehicle status
or position, e.g., velocity, following distance, and relative
lane position. Other research addressing driving signals
includes driving behavior modeling that predicts the fu-
ture status of a vehicle [1] [2], drowsy or drunk driving
detection with eye-monitoring [3] [4], and the cognitive
modeling of drivers [5]. Driving behaviors are different
among drivers, and as such, modeling of drivers’ char-
acteristics in driving behaviors has also been investigated
for intelligent assistance for each driver [6] [7]. In [6] and
[7], drivers were modeled using Gaussian mixture models
(GMMs) [8] that characterized the distributions of gas and
brake pedal pressure, velocity, and following distance.

In this research, we focused on drivers’ characteristics
in driving behavior of gas and brake pedal operation, with

drivers’ characteristics extracted through spectral analysis
of the pedal operation signals. We applied cepstral analysis
to the gas and brake pedal signals to obtain cepstral coef-
ficients, which are the most widely used spectral features
for speech recognition. From a theoretical point of view,
a cepstrum is defined as the inverse Fourier transform of
the log power spectrum of the signal, which allows us
to smooth the structure of the spectrum by keeping only
the first several lower-order cepstral coefficients and setting
the remaining coefficients to zero. Cepstral coefficients are
therefore convenient for representing the spectral envelope.

Assuming that drivers’ characteristics in driving behav-
iors while accelerating or decelerating could be represented
by spectral envelope of pedal operation signals, we mod-
eled the characteristics of each driver with a GMM using
the lower-order cepstral coefficients. GMM driver models
based on cepstral features were evaluated in the identifi-
cation of 276 drivers and compared to conventional GMM
driver models that used raw driving signals without any
applied spectral analysis techniques.

2. DRIVING BEHAVIORAL SIGNALS

2.1. Driving Signals

Observable driving signals can be categorized into three
groups:

i) Driving behavioral signals
(e.g., gas pedal pressure, brake pedal pressure, and
steering angle)

ii) Vehicle status signals
(e.g., velocity, acceleration, and engine speed)

iii) Vehicle position signals
(e.g., following distance, relative lane position, and
yaw angle).

Among these signals, we focused here on the driving be-
havioral signals, especially on the drivers’ characteristics
with respect to gas and brake pedal pressures.

2.2. Data Collection

Driving behavioral signals were collected using a data col-
lection vehicle (Toyota Regius), which has been specially
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Fig. 1. Examples of driving behavioral signals.
(Top: gas pedal signal; Bottom: brake pedal signal)

designed for data collection in the Center for Integrated
Acoustic Information Research (CIAIR) project. Detailed
information on this corpus can be found in [9]. Each driver
drove the car on a city road, and five-channel driving sig-
nals as well as 16-channel speech signals, three-channel
video signals, and GPS were recorded. The driving sig-
nals included force on gas and brake pedals, engine speed,
car velocity, and steering angle. These signals were orig-
inally sampled at 1 kHz and down-sampled at 100 Hz in
experiments.

Figure 1 shows examples of three-minute driving be-
havioral signals collected in the vehicle. The top and
bottom figures correspond to the force on gas and brake
pedals, respectively.

3. DRIVER MODELING

3.1. Spectral Analysis of Pedal Signals

Examples of gas pedal operation signals for two drivers are
shown in Fig. 2 (left) and their corresponding spectra are
shown in Fig. 2 (right). Each figure shows three examples
of 0.32-second long gas pedal signals. Driver A in Fig. 2
(top) tends to increase the pressure on the gas pedal gradu-
ally, whereas driver B in Fig. 2 (bottom) accelerates in two
stages. After the initial acceleration, driver B momentarily
reduces the pressure on the gas pedal, and then resumes
acceleration.

We can see that the spectra shown in the right figures
are similar in the same driver but different between the
two drivers. Assuming that the spectral envelope can cap-
ture the differences between the characteristics of among
different drivers, we focused on the differences in spectral
envelopes represented by cepstral coefficients.
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Fig. 2. Gas pedal signals (left) and their spectra (right).
(Top: driver A；Bottom: driver B)

3.2. GMM Driver Modeling and Identification

A Gaussian mixture model (GMM) [8] was used to repre-
sent the distributions of feature vectors of cepstral coeffi-
cients of each driver. The GMM parameters were estimated
using the expectation maximization (EM) algorithm. The
GMM driver models were evaluated in driver identification
experiments, in which the unknown driver was identified
as driver k∗ who gave the maximum weighted GMM log
likelihood over gas pedal and brake pedals:

k∗ = arg max
k

{αP (G|λG,k) + (1 − α)P (B|λB,k)},
0 ≤ α ≤ 1, (1)

where G and B are the cepstral sequences of gas and brake
pedals, and λG,k and λB,k are the k-th driver models of gas
and brake pedals, respectively; α is the linear combination
weight for the likelihood of gas pedal signals.

4. DRIVER IDENTIFICATION EXPERIMENT

4.1. Experimental Conditions

Table 1 displays experimental conditions for driver identi-
fication. We used driving data of 276 drivers who drove for
more than six minutes, excluding the data gathered while
not moving. The driving signals of the first three minutes
were used for training, and the second three minutes for
the test. We modeled the distribution of cepstral coef-
ficients and their dynamic features (Δ coefficients) using
GMMs with 8, 16 or 32 Gaussians and diagonal covariance
matrices.



Table 1. Experimental conditions

Number of drivers 276
Training data length 3 min

Test data length 3 min
Sampling frequency 100 Hz

Frame length 0.32 sec
Frame shift 0.1 sec

Analysis window rectangular window
Number of Gaussians 8, 16, 32
Cepstral coefficients c(0) – c(15)

Δ window length 0.8 sec
Weight for gas pedal likelihood α 0 – 1

As in the case of speech recognition, we also use the
dynamic features of the driving behavioral signals defined
as linear regression coefficients:

Δx(t) =

∑K
k=−K kx(t + k)
∑K

k=−K k2
, (2)

where x(t) is the raw signal at time t, and K is the
half window size for calculating the Δ coefficients. We
selected 2K = 800 ms as the best window size from pre-
liminary experiments. Frame length, frame shift, and the
range of cepstral coefficients were also determined in the
preliminary experiments.

We also compared the driver models based on cepstral
features to the conventional driver models based on the
raw driving signals. Examples of distributions of raw gas
pedal signals are shown in Fig. 3 and distributions of the
0-th cepstral coefficient are given in Fig. 4. Significant
differences in distributions among drivers can be observed
in both figures.

4.2. Experimental Results

Figures 5 and 6 show identification results for 8, 16, and
32-component GMM driver models using raw signals and
cepstral coefficients (cepstrum), respectively. The leftmost
results correspond to the identification rates when using
only the brake pedal signals, and rightmost results were
obtained with gas pedal signals alone. We can see that
the gas pedal signals gave better performance than brake
pedal signals. This is because drivers hit the gas pedal
more frequently than the brake pedal as shown in Fig. 1.

The results for 16-component GMM in Figs. 5 and 6
are summarized in Fig. 7. The identification performance
was rather low when using the raw driving signals: the
best identification rate for raw signals was 47.5% with
α = 0.80. By applying cepstral analysis, however, the
identification rate increased to 76.8% with α = 0.76. We
can thus conclude that cepstral features could capture the
individualities in driving behavior better than raw driving
signals, and could achieve better performance in driver
identification. We also carried out driver identification
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Fig. 3. Distribution of raw signal.
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Fig. 4. Distribution of 0th cepstral coefficient.

experiments using driving signals collected on a driving
simulator, obtaining similar results [10].

4.3. Experiment for Different Test Lengths

We investigated the identification performance for differ-
ent test lengths. Figure 8 shows identification rates when
changing the the test data length as 1, 1.5, and 3 min-
utes. Although the identification rate for cepstral features
deteriorated to 59.5% with the one-minute test data, it still
performed better than the identification rate of raw signals
with the three-minute test data.

5. CONCLUSION

In this paper, we investigated the modeling of individ-
uality’s in driving behavioral signals. We modeled the
distribution of cepstral coefficients of gas and brake pedal
operation signals using the property that the spectral en-
velopes are similar in the same driver and the different
among different drivers. Driver models were evaluated
in driver identification experiments, and by using cepstral
features we achieved an identification rate of 76.8 % for
276 drivers, which corresponds to a 55 % error reduction
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over the conventional driver model based on raw pedal
operation signals.

The selective use of driving signals while accelerat-
ing or decelerating and the modeling of characteristics
in longer-term driving signals (more than a 0.32-second
frame length) must be addressed in future work. Other
driver modeling techniques apart from GMM, such as hid-
den Markov models, can be employed for more efficient
modeling of the time series of feature vectors. We also plan
to extend driver modeling to driver-type modeling to in-
telligently assist individual driver by clustering the drivers
into certain groups (e.g., impatient, aggressive, alert, · · · ).
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