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Abstract

We present a speech enhancement system based on Gaussian
mixture modeling in the sub-band log-power domain of the ob-
served noisy speech. The basic idea of this method is fitting the
actual behaviors of noise and noisy speech powers in terms of
their distributions in each sub-band and employing the statisti-
cal methods for the noise power estimation and speech activity
discrimination. The conventional two components GMM with
standard EM algorithm is applied in each sub-band for each seg-
ment of half second of the observed noisy speech power. Two
statistical methods of maximum a posterior probability (MAP)
and cumulative distribution function equalization (CDFE) are
developed in this works for the noise estimation. For the voice
activity detection, an adaptable decision rule is proposed for the
speech recognition application. The noise power and VAD are
used in a Wiener filtering system. In an experimental evalua-
tion on AURORA2 database, we compare the proposed to the
conventional VAD and noise estimation method. From the ex-
perimental results, the proposed VAD method is superior in the
non-speech detection rate and the Wiener filtering system based
on proposed noise estimation performed better in speech recog-
nition rate, especially in the case when CDFE estimator is em-
ployed.

1. Introduction
Noise reduction is an indispensable task of speech technologies,
especially in mobile communication, robust speech recognition
or hearing aids devices. Among the single channel speech en-
hancement approaches, the statistical methods in spectral do-
main is shown to be most effective method [2]-[3]. Considering
the additive model of noisy speech

X (n, k) = S (n, k) + N (n, k) , (1)

where X, S and N are the complex spectra of noisy speech,
clean speech and noise, respectively, these methods are based
on statistical estimations for the speech spectral S using the
joint distribution density p (X,S). Several estimation rules
have been studied in literate [1], [2]. This task is separate topic
and is not discussed in this work. Here we discuss the modeling
of the noise and speech spectrum distributions, which result on
the joint distribution p (X,S). This task is most important but
highly difficult due to the dynamic change of the speech and
noise behaviors in both time and frequency directions. Con-
ventional methods assume the zero-mean Gaussian distribution
of the noise and speech spectrum, which simplifies the men-
tioned above problem by the noise and signal power (variance)
estimation. Among the Gaussian modeling, the signal power is

often estimated after noise power estimation, and the decision-
directed is well-known as the best method for signal power esti-
mation [2]. Meanwhile, the noise power estimation remains the
most difficult problem, especially under low SNR conditions.
Several noise estimation methods have been proposed in the lit-
erature [2]-[5]. The conventional method uses a voice activity
detection [3] to update the noise power during the only noise
frames, where the updating information is given by the noisy
speech power. The main drawback is that the noise is updated
only in the noise frames and therefore, this method is limited
for the non-stationary noise environments. Recently, two meth-
ods have been proposed in the literature, which do not require
VAD and allow to update the noise level even in the speech ac-
tive duration. The minimum statistic method is proposed by
Martin [4], where the updating information is given by tracking
the minima from a previous segment of observed noisy pow-
ers. Another method uses a q-quantile of the histogram taken
from a previous segment to update the local noise power [5].
In both cases on minimum statistic and q-quantile, a segment
of 0.5-2 seconds are recommended. The main draw back of
these methods is the dependence on control parameter ts, which
are difficult to optimized from actual observations. Moreover,
this methods is applicable for only a low-dynamic change of the
noise level. The basic idea of proposed in this work method is
we use the behaviors of the noise and noisy speech powers in
term of their probability density functions (PDF) and employ
statistical methods to derive the ”most like” estimation of the
noise power. Furthermore the fitted behaviors of noise and noisy
speech in sub-bands are used to discriminate the speech activ-
ity. An important point of proposed method is we estimate and
upgrade the distributions using a conventional two-components
GMM model for short segments of observed noisy speech with-
out any training. Given the noise and noisy speech power dis-
tributions, the cumulative distribution equalization (CDFE) es-
timation method is developed in this work for the noise power
estimation. We also compare this method to the conventional
maximum a posterior (MAP) estimation. In the VAD for speech
recognition application, given the behaviors of noise and noisy
speech in sub-bands, an adaptable decision rule is applied to im-
prove the non-speech detection rate and keep the lowest level of
distortions. The organization of this paper is follows. Section
2 we describe the Gaussian mixture model used in this work
and develop the MAP and CDFE estimators for the noise power
estimation.Section 3 proposes a VAD method and reports the
experimental evaluation for the VAD performances. In section
4, we implement a Wiener filtering system to compare the pro-
posed noise estimation to the conventional methods and evalu-
ate on AURORA2 database. Section 5 concludes this paper and
discusses about the future works.
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Figure 1: Two components Gaussian mixture model and CDFE
in sub-band log-power domain.

2. Noise power estimation by using GMM
in the sub-band log power domain

We first describe the GMM fitting is as follows. The observed
noisy speech power is smoothed by standard moving average on
the noisy periodogram

PX (k, l) = (1 − αX) PX (k, l − 1) + αX |X (k, l)|2 , (2)

where X and PX denote the observed noisy speech spectrum
and the smoothed power, (k, l) denotes the frequency-frame in-
dex. The smoothing coefficients should be dependent on the
frame length and sampling frequency [4]. In our experiment, we
set αX = 0.88. The two components GMM is fitted for each
segment of 0.5 second. For simplicity, we assume the diago-
nal covariance matrix across the sub-bands. The standard EM
algorithm is applied where the initial is settled by k-mean al-
gorithm. The estimated parameters in previous segment is used
as an initial for the next one. We verified the convergence after
just 4-7 iterations. We upgrade the GMM parameter after each
10ms. Note that this GMM model has been applied in full-band
log-power domain for the SNR estimation [6].

2.1. MAP estimation of noise power

We first express the noisy speech log-power as follows:

lnPX (k, l) = lnPN (k, l) + ln SNR (k, l) . (3)

Recalling two subspace distributions of the GMM in each sub-
band, which is fit by the described above procedure

ln PN (k) ∼ N
�
x, µN (k) , σ2

N (k)
�
,

ln PX (k) ∼ N
�
x, µX (k) , σ2

X (k)
�
.

(4)

The MAP estimation equation for the noise power is denoted as
follows:

l̂n PN = max
PN

p (ln PX | ln PN) p (ln PN ) . (5)

From (3), the condition distribution in (5) is given by the dis-
tribution of the instantaneous SNR. This variable is difference
of two Gaussian variables and therefore is also assumed to be a
Gaussian:

ln SNR (k, l) ∼ N
�
µX − µN , σ2

X − σ2
N

�
. (6)

For solving (5) we take the derivative to zero. Substituting (4)
and (6) into, the estimation of noise power is given as follows:

l̂nPN =
�

µN (k) +
σ2

N (k)

σ2
X

(k)
(ln PX (l, k) − µX (k))

�
.

(7)
From (7), the MAP estimation of noise power can be viewed
as a self-learning linear regression on the logarithmic domain,
where the regression parameter is controlled by the fitted distri-
butions.

2.2. Cumulative distribution function mapping

A weak point of MAP estimation in previous section is that the
assumption (6) is exactly hold only if two components in right
side of (5) are statistically independent and it might get some
errors under low SNR conditions. An alternative statistical es-
timation method which overcomes this problem is cumulative
distribution equalization (CDFE) . This estimation method finds
a best non linear transform from observed noisy speech to clean
speech in log-power domain to match the its CDF

̂lnPN (k, l) = g {ln PX (k, l)} , (8)

Fg(ln PX) [g (ln PX)] = FlnPN (ln PN ) . (9)

Here g(.) denotes a nonlinear function and F (.) denotes the cu-
mulative distribution function. The key point of CDFE estima-
tion is the invariant property of CDF which is noted as follows

Fg(x) [g (x)] = Fx (x) . (10)

From (9) and (10), the noise power estimation is given by map-
ping from CDF of observed noisy speech to the CDF of noise
power as follows,

g (ln P X) = F−1
ln PN

[Fln PX (ln PX)] . (11)

The principle of CDFE estimation using GMM fitting is shown
in Figure1. Note that, the Gaussian CDFs have tractable forms
expression and therefore, this transform is carried out without
any difficulties. Figure 2 show examples of the CDFE for two
sub-bands. This method implies a non-linear regression, where
the non-linear function is controlled by the cumulative distribu-
tion functions.

2.3. Speech spectral magnitude estimation

Given the noise estimation in power domain, the clean speech
power is estimated using decision-directed method

PS = αS
�S2 + (1 − αS) max (PX − PN , 0) (12)

To investigate performance of the proposed noise estimation
method, we implement a simple Wiener filter, the gain function
of which is denoted by

G =
Ŝ

X
= max

�
PS

PX
, β

�
, (13)

where β = 0.1 is a spectral floor, which is used to mask the
residual noise effect. The proposed Wiener filter will be com-
bined to a proposed in next section voice activity detection.
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Figure 2: Example of fitted cumulative distribution functions
of the noise and noisy speech in sub-band log-power domain.
(Dotted lines draw the actual histograms)

3. Voice activity detection based on GMM
in sub-band log power domain

The second approach presented in this work is a voice activity
detection. This VAD also uses the fitted modeling distributions
of the noise and noisy speech power subspaces. One important
point is we set an adaptable decision rule to control the false
error rate and avoid the high level of distortions.

3.1. GMM in Mel-frequency banks

Unlike in the noise estimation, where the linear frequency scale
should be used in order to reproduce the sounds, the sub-band
GMM model for the VAD is applied in the Mel-frequency filter
banks. We employ a 24 Mel-filter banks system. For saving
computational cost, the covariance matrix is assumed to be a
diagonal. Assuming two hypothesis: H1(speech present) and
H0 (only noise present), for each frame index, the decision rule
is formulated by averaging the log-likelihood ratio and noted as
follows:

1

KMel

KMel�
k=0

log
p (ln Pob (k) |H1)

p (ln Pob (k) |H0)

>
≤ η, (14)

where Pob denotes the observed Mel-bank power at a particular
frame. the hypotheses H1 and H0 are denoted as follows:

H1 ∼ N
�
µX , σ2

X

�
H0 ∼ N

�
µN , σ2

N

� (15)

For smoothing the VAD, the spike frame firstly detected as
speech frame will be reclassified. An important thing is the
setting of threshold decision η which highly affects to the per-
formances of the VAD system. Naturally, the optimal, in sta-
tistical meaning, threshold for the log-like lihood ratio is zero.
However for the speech recognition system, where the less dis-
tortion level is to more important than the noise reduction, the
VAD system should keep a high level of speech detection rate,
while is working in improvement of non-speech detection rate.
From figure 1, we can see that, when the subspace distributions
are closed, the optimal solution (which in fact is the intersection
point of two distributions) yields a high level of false alarm and
consequently possible high level of distortions. For that case,

η

0 0η =

1 0η <

0melSNR 0melSNR

Figure 3: Adaptive threshold to SNRmel

we should move the decision threshold on left side. Follow-
ing this consideration, we propose a adaptable threshold, which
is dependent on the average distance between subspace distri-
butions in each sub-band. This measurement is defined below
somehow like the segmental SNR

Smel =
1

Kmel

KMel�
k=0

(µX (k) − µN (k)), (16)

where the number of processing filter banks is Kmel = 24. Fig-
ure 3 shows the linear tuning of threshold using in this work.
We set SNRmel0 = 30 and SNRmel1 = 5 which are approxi-
mately equivalent to 0dB and 20dB levels of the segmental SNR
consequently. The left boundary η1 = −1 .

3.2. Experimental evaluation

The proposed VAD is evaluated in terms of the speech/non-
speech discrimination analysis using AURORA2 database and
is compared to the most representative methods. Two measure-
ments of speech hit rate HR1 (i.e. the average rate of all speech
frames that are correctly detected as speech) and non-speech
hit rate HR0 (i.e. the average rate of all non-speech frames
that are correctly detected as noise) are evaluated. The VAD
performances as a function of the SNR are evaluated on the
AURORA2 database and are shown in Figure 4 and 5. The
proposed method (GMM) is compared to the standard G729 [8]
and most recent method KL-FBE based on Kullback-Leiber dis-
tance [9]. Table 1 reports the overall results of three methods.
We can see that, the proposed GMM method is compatible to
the KL-FBE at the HR1 rate but greatly overcomes KL-FBE at
HR0 rate. Note that,the setting decision rule is critically im-
portant, since from our experiments, the GMM method with
non adaptable decision rule yields the performances even worse
than G729.

Table 1: Overall HR1 and HR0 evaluation on AURORA

Rates G729 FL-FBE GMM

HR1 93.00 96.96 96.24
HR0 31.77 46.83 59.18

Table 2: WER performances of WF systems

Method MS GMMMAP GMMCDFE

Multi-condition 12.32 12.18 10.02
Clean 25.20 24.78 20.34
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Figure 4: Speech hit rate as a function of SNR

4. Application to speech enhancement
The proposed noise power estimation and VAD methods are
used for a Wiener filtering speech enhancement system. The
GMM fitting is same as was described in section 2. The MAP
or CDFE estimation of noise power according to (7) and(11)
consequently. The gain function is calculated following (13).
Finally the phase adding, IFFT and overlap and add are com-
bined to the waveform reconstruction For reference, the analo-
gous WF system based on the minimum statistic method (MS)
is also implemented. The standard Aurora2 speech data set is
used for evaluation. Speech recognition experiments are per-
formed on the Aurora 2 connected to the digit recognition task
[9]. The digit HMMs are the standard complex back-end mod-
els of 16 states , and each state has a 20 components Gaussian
mixture with diagonal covariance matrix. The training process
is carried out at each front-end before training. The feature vec-
tor has 39 components of 12 MFCC coefficients together with
C0, their first and second derivatives. Table 2 compare the noise
power estimation methods in overall performance of speech
recognition at the word errors rate. The WF-GMMCDFE sys-
tem overcomes conventional WF-MS method in WER with ap-
proximately 2 percents in multi-condition training, and 4 per-
cents at clean training, while the WF-GMMMAP yields approx-
imately same results compared to WF-MS method. Moreover,
from the hearing test, we verify that, the WF-GMMCDFE out-
put speeches have best speech intelligibility with small musical
noise level compatible to WF-MS method. The WF-GMMMAP
provides better noise reduction, however some musical noise is
remained. In next, the WFGMMCDFE system is combined to
the proposed VAD. The results of WF+FD systems are in table
4. The system using GMMVAD is performed best for the clean
training with about 2.5 percents improvement in WER. How-
ever the multi-condition training, the improvements are very
small.

5. Conclusion
We propose a speech enhancement based on GMM fitting in the
log-power domain of observed noisy speech. Given the distrib-
utions of noise and noisy speech subspaces, the statistical meth-
ods are employed for the noise estimation and speech activity

Table 3: WER performances of WFGMMCDFE+FD systems

Method KL-FBE GMM G729

Multicondition 9.32 13.25 9.89
Clean 19.35 26.54 17.75
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Figure 5: Non-speech hit rate as function of SNR

discrimination. The main point here is that the two-components
GMM model in a short segment is able to estimate well the sub-
space distributions of noise and noisy speech. Furthermore, the
employment of statistical method improve the performance of
both noise estimation and voice activity detection tasks. The
experiment results show the advantage use of proposed method
compared to conventional noise estimation methods.
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