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ABSTRACT 

Human-Computer interaction for in-vehicle systems requires 
effective audio capture, tracking of who is speaking, 
environmental noise suppression, and robust processing for 
applications such as route navigation, hands-free mobile 
communications, and human-to-human communications for 
hearing impaired subjects. In this paper, we consider two 
interactive speech processing frameworks for in-vehicle systems. 
First, we consider integrating audio-visual processing for 
localization the primary speech for a driver using a route 
navigation system. Integrating both visual and audio content 
allows us to reject unintended speech to be submitted for speech 
recognition within the route dialog system. Second, we consider 
a combined multi-channel array processing scheme based on a 
combined fixed and adaptive array processing scheme (CFA-BF) 
with a spectral constrained iterative Auto-LSP and auditory 
masked GMMSE-AMT-ERB processing for speech 
enhancement. The combined scheme takes advantage of the 
strengths offered by array processing methods in noisy 
environments, as well as speed and efficiency for single channel 
methods. We evaluate the audio-visual localization scheme for 
route navigation dialogs and show improved speech accuracy by 
up to 40% using the CIAIR in-vehicle data corpus from Nagoya, 
Japan. For the combine array processing and speech 
enhancement methods, we demonstrate consistent levels of noise 
suppression and voice communication quality improvement 
using a subset of the TIMIT corpus with four real noise sources, 
with an overall average 26dB increase in SegSNR from the 
original degraded audio corpus.  

1. INTRODUCTION 
Human-computer interaction for in-vehicle information access, 
human communications, and navigation systems are challenging 
problems because of the diverse and changing acoustic 
environments inside cars. There are many situations where it is 
important to be able to identify and track which subject inside the 
vehicle is talking, as well as perform speech processing using 
multi-microphone arrays and enhancement algorithms to improve 
the perceived quality of speech.  Some example environments 

include: in-vehicle hands-free voice communications, mobile 
phone use in public noisy environments, hearing impaired 
persons in large classrooms or meeting halls, and others. A 
number of speech enhancement algorithms have been proposed 
in the past, and a survey can be found in ([1] - Chap. 8). 
       In this paper, we consider two aspects of signal processing 
for in-vehicle systems: (i) audio-visual processing for 
localization of the primary talker for in-vehicle route dialog 
systems, and (ii) combine array processing and auditory based 
speech enhancement to improve quality for hearing impaired 
subjects. In the first area, it is proposed that the integration of 
video and audio information can significantly improve dialog 
system performance, since the visual modality is not impacted by 
acoustic noise. Here, we propose a robust audio-visual 
integration system for source tracking and speech enhancement 
for an in-vehicle speech dialog system. The proposed system 
integrates both audio and visual information to locate the desired 
speaker source. Using real data collected in car environments, the 
proposed system can improve desired speech accuracy by up to 
40.75% compared with audio data alone.  
      In the second area, speech enhancement for hearing impaired 
subjects inside car environments requires FM technology where 
speech from non-hearing impaired speakers are captured and 
transmitted via a wireless link directly to a hearing assist device 
worn by the hearing impaired subject.  One way to discuss trade-
offs in speech enhancement algorithms in this area is to separate 
those that are single-channel, dual channel, or multi-channel 
array based approaches. For single-channel applications, only a 
single microphone is available. Characterization of noise 
statistics must be performed during periods of silence between 
utterances, requiring (i) a stationary or short-time varying 
assumption of the background noise, and (ii) that the speech and 
noise are uncorrelated. In this area, we incorporate array 
processing with single channel speech enhancement methods to 
suppress noise for in-vehicle applications. In the next section, we 
consider localization in the car environment. 
 



 

 

2.  LOCALIZATION VIA AUDIO-VISUAL 
The increased use of mobile telephones and voiced controlled 
features for human-machine dialog system in cars has created a 
greater demand for hands-free,  in-car installations. Many 
countries now restrict handheld cellular technology while 
operating a vehicle. As such, there is a greater need to have 
reliable voice capture within automobile environments. 
     However, the distance between a hands-free car microphone 
and the speaker will cause a severe loss in speech quality due to 
changing acoustic environments.  Therefore, the topic of 
capturing clean and distortion-free speech under distant talker 
conditions in noisy car environments has attracted much 
attention. Microphone array processing and beamforming is one 
promising area which can yield effective performance. Currently, 
most beamforming algorithms must integrate speaker/source 
localization techniques in order to enhance the desired speech 
and suppress interference [9,10,8]. 
     Here, speaker localization is the ability to estimate the 
position of a speaker in the car, and involes the following: 
   (i) Complex in-vehicle noise situations will severely degrade 

performance of speaker localization techniques.  
   (ii) Speaker localization techniques cannot distinguish between 

desired and undesired speech if both speech sources are from 
the same direction.  

In car environments, the desired speech for a navigation system is 
assumed to be the driver's, while the undesired speech includes 
both the passengers and a portion of driver's (e.g., the driver 
murmurs while looking up or down, the driver laughs and chats 
with other people inside car, etc.). One way to address this 
problem is to integrate visual based object localization 
techniques.  

Audio-visual (A-V) speaker localization has recently 
received significant interest [5,6,7] mainly because the visual 
modality is not affected by varying acoustic noise and sound 
localization is unaffected by rapidly varying room lighting. 
However, there are situations where the integration of video 
information can significantly improve in-vehicle human-machine 
dialog system performance. For example, determining the 
movement of the driver's mouth, body, and head position can 
impact how a dialog system should respond. If the driver's mouth 
does not move while speech is detected from the driver's position, 
then most likely the passenger who sits behind the driver is 
talking. If the driver asks a question while facing forward, then 
we can expect the request is being directed towards the in-vehicle 
dialog system. If the driver is turned towards individuals sitting in 
the backseat, then the question is most likely directed at someone 

in the car (e.g., "Where did you say you wanted to eat?"). For 
such a case, it would not be appropriate to submit such a request 
to the dialog system. In this area, we discuss the development of 
an audio-visual system for in-vehicle localization which was 
originally developed in [2].  Evaluations are based on data 
collected from the automobile collection platform of the Center 
for Integrated Acoustic Information Research (CIAIR) [4], 
Nagoya University, Japan.  
   Fig. 1 illustrates the proposed audio-visual integration system 
which includes the following four stages: audio-visual data 
synchronization, speaker localization using audio data, face 
tracking using visual data, and speech enhancement and 
noise/interfering speech suppression using a constrained 
switched adaptive beamformer [8].   
     A-V Data Synchronization: Since sampling rates of the audio 
and visual signals are different, the proportion of the number of 
the sampled audio data to that of the visual data in general is a 
fractional frame number. In our case, the CIAIR database from 
Nagoya Univ.[4] uses a 16kHz speech sample rate with a visual 
data rate of 30 frames/sec. After synchronization, we keep the 
temporal mismatch error between audio and visual data at less 
than 0.033 sec. This mismatch level is acceptable since visual 
data is only used for speaker localization and activation.  
     Source Tracking Using Audio: We first use the Teager Energy 
Operator (TEO) criterion to decide the speech activity for the 
audio data, then apply the adaptive LMS filter technique to locate 
the current position of the speech source. Further details are 
discussed in [2].  
     Face Tracking Using Visual Data:   The function of this 
processing stage is to detect interfering speech which cannot be 
identified by sound localization techniques alone. We apply basic 
eye and mouth detection and tracking techniques in this 
processing stage. 
     From our observation and experiments using the CIAIR in-
vehicle corpus, we found that most of the interfering speech 
versus that from the driver occurs in the following situations:  
Case 1: The passenger talks and the driver listens. Under this 
situation, the driver's lips will not move often; 
Case 2: The driver murmurs while looking up or down, which 
causes part of his/her face to be obscured by the steering wheel; 
Case 3: The driver laughs or coughs while covering his/her 
mouth with their hands; 
Case 4: The driver chats with the interfering person while he/she 
is driving. Under this situation, the driver will likely shift his/her 
head or body slightly towards the interfering person, which 
makes a portion of the face features disappear. 
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Figure 1: Schematic diagram of the proposed audio-visual integration system



Manually Computed Periods 
(in secs) 

Detected Periods 
(in secs) 

Using Audio Data 

Detected Periods 
(in secs) 

Using Audio-Visual Data 

Speech Desired 
speech Speech Desired 

speech Speech Desired 
speech 

107.335 47.173 128.392 95.978 128.392 57.456 
Table 1: Performance of Detected Route Dialog Directed Speech using (i) manual labeling, (ii) audio processing alone, and (iii) audio and 
visual processing (note: this particular audio-visual stream consists of 321.5 sec of data, of which there is 107.335sec of speech activity).  
    
 Fig. 2 shows examples where there is speech interference (i.e., 
speech not always intended for the route navigation system). In 
the formulated audio-visual integration system, we use template 
based eyes and mouth detection software to detect face features. 
We also track the distance between the eyes and changing mouth 
shape across frames. For example, if a driver's mouth shape does 
not change within a certain period, the current speech most likely 
comes from the passenger (i.e., Case 1); if the distance between 
driver's eyes is smaller than a certain value for a time period, then 
he/she likely has shifted their head backwards (i.e., Case 4); if 
part of face features, such as the mouth, cannot be detected, then 
most likely the driver is under situations described in Case 2 and 
3.  
     Enhancement and Interfering Speech / Noise Suppression: 
Once we detect the nature of the current signal, we propose to use 
the constrained switched adaptive beamforming algorithm (CSA-
BF) [8] to enhance the desired speech and suppress background 
noise and interfering speech. 
     Fig. 3 shows how visual information helps to detect the 
interfering speech or non-dialog directed speech. Here, it is 
straightforward to determine when speech activity occurs, but 
larger challenge is to say when the speech is directed towards the 
microphone array based in-vehicle navigation system. For 
example, the signal during the period from frame count 150 to 
200 corresponds to when the driver is laughing. Here, the 
averaged Teager energy (TEO) is high enough to pass the speech 
threshold, and sound localization results also confirm that the 
speech comes from position number 0, (i.e., the driver is talking 
and facing forward). Therefore, if only audio information is used, 
the speech during this period will be identified as desired speech. 
However, from the results of face feature detection, we find that 
the driver's mouth cannot be detected since it is covered by the 
driver's hand, and therefore this segment is correctly labeled as 
interfering speech. Similarly, when the driver is talking with the 
passenger during frame count 400 to 500, our face tracking 
algorithm is also able to  classify this speech as interfering 
speech, since the driver shifts her head backward frequently 
while chatting with the passenger, and the detected distance 
between the eyes is shorter than that while facing forward. This 
speech also cannot be identified as undesired by audio data only. 
      Table 1 shows the accumulated speech and desired speech 
activity periods under different experimental situations. From this 
table, we can see that by using visual data processing in addition 
to the TEO criterion with the LMS filter, the accuracy of the 
desired speech detection is improved 40.75%, (i.e., a reduction in 
the desired speech duration from 96 sec to 57 sec, approaching 
the goal of 47 sec). While this improvement is important (i.e., 

reduction of 39.412 sec), there is still approximately 10 
seconds of interfering speech that is still included.  

 
 Fig. 2: (a-d): Face is detected as “existing” and source comes 
from quantized angular locations 1, 0, -3, and -5 respectfully.  (e-
f): face is detected as “not existing” and source is from direction 
0 (driver laughing) and -5 (interference from passenger talking 
with the driver). 
 

 
Fig. 3: Audio-Visual Tracking results for a selected speaker  

using actual in-vehicle audio-visual data from the CIAIR corpus. 
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Interfering Speech Cancellation Results:  For the system from 
Fig. 1, the interfering speech cancellation is possible with/without 
face tracking results as one of the constraints for the constrained 
switched adaptive beamforming (CSA-BF).  From these results, 
we can make the following observations:  
(i) Employing the proposed audio-visual integration system can 
improve the accuracy of the desired source tracking by up to 
40.75% (i.e., we can remove non-desired speaker speech prior to 
ASR for the dialog system); 
(ii) The proposed system with better source tracking using Audio-
Visual also improves interfering speech cancellation. 
 
3.  SPEECH ENHANCEMENT: ARRAY + SINGLE 
CHANNEL PROCESSING SCHEMES  
Next, we consider speech/array processing for hearing impaired 
subjects for in-vehicle environments.  Background car noise and 
competing speakers interference represents challenges for 
hearing-impaired subjects in car environments. For the 
application for hearing impaired subjects in vehicle, we first 
present a data collection experiment for a proposed FM wireless 
transmission scenario using a 5-channel microphone array in the 
car, and followed by several alternative speech enhancement 
algorithms. After formulating 6 different processing methods, we 
evaluate the performance using SegSNR improvement with data 
recorded in a moving car environment. Among the 6 processing 
configurations, the combined fixed/adaptive beamforming (CFA-
BF) obtains the highest level of SegSNR improvement by up to 
2.65 dB.  An earlier version of this work was presented in [3], 
and here we discuss the framework and further results in detail.  
    To motivate the proposed method, we consider a previous 
proposed combined fixed/adaptive beamforming algorithm 
(CFA-BF) [7] for a TIMIT sentence degraded by Flat Channel 
Communication Noise (FLN). We use the same microphone array 
set up, and found that this method can improve SegSNR (Signal-
to-Noise Ratio) by up to 11.75dB. Next, we also applied a 
recently proposed GMMSE-AMT-ERB algorithm (GAE) [6]that 
uses an auditory masked threshold with equal rectangular 
bandwidth filters, and an earlier spectral constrained iterative 
speech enhancement algorithm Auto-LSP [11] on the same noisy 
data, and found that the SegSNR improvements are 16dB and 
20.5dB respectively. However, these algorithms cannot entirely 
suppress the FLN noise. Fig. 4 shows the spectrogram of the 
original degraded speech, and enhanced speech by CFA, GAE, 
and Auto-LSP respectively [11]. Our original objective of 
choosing FLN noise was to focus on the design of an algorithm 
that can obtain the best performance under this stationary noise 
condition, and then to extend it to more complex noise 
environments. From the above experimental results, we see that 
CFA is able to suppress high frequency noise, GAE suppresses 
noise uniformly, and Auto-LSP suppresses noise efficiently 
across the entire frequency band, but there is still some residual 
noise in the high frequency region. 
 
3.1 Overall Algorithm Description 
In our algorithm, we first apply combined fixed/adaptive 
beamforming (CFA-BF) for front-end processing to obtain a first 
stage enhanced speech signal by suppressing high frequency 
noise as well as generating a corresponding residual noise. 
Secondly, according to the nature of the noise and the angle 
between the direction of speech and interference, we select a 
back-end processing method from 3 possible spectral based 
speech enhancement algorithms to suppress residual noises (i.e. 

enhancement scheme #1, #2 or #3). Fig. 5 summarizes an overall 
description of the proposed algorithm.  
 

(a)

(d)

(c)

(b)

 Fig. 4: Spectrogram of Speech Data with: (a). Original FLN 
degraded noisy speech; (b). CFA Enhanced speech; (c). GMMSE-

AMT-ERB Enhanced speech; (d). Auto-LSP Enhanced speech. 

3.2 Detailed Algorithm Design 

3.2.1.  Front-end processing 
The block diagram of the structure of the proposed algorithm is 
shown in Fig. 6. We know that most of adaptive beamforming 
algorithms will select one of the microphones as the primary 
microphone, and build an adaptive filter between it and each of 
the other microphones. These filters compensate for the different 
transfer functions between the speaker and the microphone array. 
Therefore, there are two kinds of outputs from the adaptive 
beamforming algorithm: namely the enhanced speech )(nd and 
noise signal )(nei

. Here, when we use the combined 
fixed/adaptive beamforming algorithm (CFA-BF) [8], we choose 
microphone 0 as the primary microphone, therefore, the 

Fig. 5: Formal description of the proposed algorithm. 

Let: φ  be the angle between the speech source and the axis 
of the microphone array, ψ  be the angle between the 
interference and the axis of the microphone array, 

1θ be the lower bound of the angle threshold, 2θ be the 
upper bound of the angle threshold; then, 

1. if 
1θψφ ≥− , then go to Step 4; 

2. if 
2θψφ ≤− , then select scheme #2; 

3. if 
21 θψφθ <−< , then we are between performance 

bounds for the methods, so we can randomly select one 
of the schemes to use, or employ other criteria to   
select the proper scheme to use; 

4. if the current noise has strong low frequency content, 
then select scheme #2; else select scheme #1. 

Here, both the angle and threshold are decided by the 
geometry of the microphone array, the distance from the 
sources to the array, and the nature of the interference. 



enhanced speech )(nd and noise signal )(nei are given as in 
Eqn. (1) and (2). 
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where, N is the total number of microphones, ix is the 
thi microphone input signal with 1...,,1,0 −= Ni . Compared 

with the original noisy speech, the enhanced speech 
)(nd suppresses noise mainly in the high-frequency band, and 

the corresponding noise outputs )(nei
are the residual noises that 
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)(nd in phase. 
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Fig. 6: Block Diagram of the Proposed Algorithm 
3.2.2.  Back-end processing 
For the back-end processing, we propose 3 possible enhancement 
schemes, which are classified into 2 categories:  
• Category 1: includes scheme #1 and #2. Both enhancement 

schemes use the outputs of front-end processing as the input 
for back-end processing; 

• Category 2: includes scheme #3 only. This scheme uses the 
microphone array as a tool to classify the current noise. If 
the current noise changes, noise updating will be performed 
to provide current noise estimation for back-end processing. 
The input of the back-end processing here will be the 
original input signal of the primary microphone. 

In scheme #1, we adapt a modified GMMSE-AMT-ERB 
(mGAE), which builds on the original MMSE method[11]. The 
original GAE is proposed in [2] and assumes that the speech is 
degraded with additive noise and the speech and noise segments 
are uncorrelated as in Eqn (3): 

)3()()()( nnnxny +=  
The short term power spectrum is calculated by applying a 
Hamming window to a frame of speech. Under this assumed 
model, one can obtain a family of MMSE speech spectral 
estimators as, 
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Here, let nkP be the noise power spectrum for the thk subband, 

and ykP be the noisy speech power spectrum for the thk subband. 

The values of nkP and ykP are calculated as follows, 
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 In our implementation, the first ten frames of noisy speech, 
which consists of only noise, is taken as the estimation of the 
noise for the entire noisy speech sentence. This assumption is 
valid if the noise does not change. However, once the noise 
spectrum changes, enhancement performance will decrease, 
resulting in either under or over noise suppression. Therefore, in 
the modified GAE (mGAE) algorithm, we use the residual noise 

)(nei
 that is generated by beamform front-end processing 

instead of the noise spectrum estimation of GAE in scheme #1. 
Under the proposed model, Eqn (5) now becomes, 
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where iλ  is a scaling factor, and we use 
Ni

1=λ for all 

1...,,1 −= Ni .  
In scheme #2, we use the enhance speech )(nd as an input 

of the Auto-LSP algorithm to remove the residue noise. This 
algorithm is discussed in more detail in [1] and [5]. 

Scheme #3 is selected only when the speech source and 
interference are very close to each other. Since beamforming 
algorithms (delay-and-sum beamforming or adaptive 
beamforming) obtain the enhanced signal by selecting the 
appropriate delays (fixed or adaptive) between each microphone 
and summing the delayed signals in phase for direction angle θ , 
we will have destructive interference for signals arriving from 
other angles. Fortunately, we can obtain a good noise estimate 
using single channel processing under this situation. Once a noise 
change is detected, noise spectrum updating is performed. We do 
not update the noise spectrum frame by frame, since we believe 
this will increase speech distortion. With the aid of a noise 
classification stage, a modified Auto-LSP algorithm (mAutoLSP) 
is used here as the back-end processing solution. The difference 
between mAuto-LSP and Auto-LSP is the presence (e.g. 
with/without) of the noise classification stage.  
3.3 Performance Evaluation 

3.3.1. Experimental Database & Setup 
In order to evaluate the performance of the proposed algorithm, 
we select 10 sentences from the TIMIT database, and degrade 
these sentences with four different noise sources: (i) White 
Gaussian Noise (AWG), (ii) Flat Channel Communication Noise 
(FLN), (iii) Large Crowd Room Noise (LCR), and (iv) 
Automobile Highway Noise (HWY). The sample frequency of 
both the sentences and noises is 8kHz. The noise level is adjusted 
to be an overall average 5dB SNR. For evaluations, we use the 
Segmental Signal-to-Noise Ratio (SegSNR) measure [10], which 
represents a noise reduction criterion for voice communications.  
 
 



3.3.2. Experiment Results 
Fig. 7 illustrates average SegSNR improvement using sentences 
degraded with FLN noise. Table 2 show the Segmental SNR 
measure for the degraded speech with 4 different noises and 
enhanced speech by 5 different schemes. 
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Fig. 7: SegSNR Results for Degraded and Enhanced Speech 

From these results, we can see that employing the proposed 
algorithm (array processing combined with either the 
psychoacoustically motivated GMMSE-AMT-ERB or speech 
based spectral constrained Auto-LSP), increases SegSNR 
significantly compared with any one individually. The SegSNR 
improvement is up to 26dB over the original degraded corpus set. 
Finally, an informal listener test evaluation confirmed the level of 
noise suppression and quality improvement for the proposed 
method. 
 

NOISE DEG CFA-
BF GAE 

CFA-
BF + 
GAE 

Auto-
LSP 

CFA + 
Auto-
LSP 

FLN 
(5dB) 11.55 20.1 23.775 27.575 37.55 39.525 

LCR 
(5dB) 13.775 21.35 23.875 29.825 27.125 37.525 

HWY 
(5dB) 12.1 13.35 18.975 16.225 36.925 39.4 

AWN 
(5dB) 8.15 14.175 18.275 19.975 32.525 32.5 

Avg. 
across 
noises 

11.39 17.24 21.23 23.4 33.53 37.24 

 
Table 2: Averaged Segmental SNR (dB) for Different Schemes 

 
4. SUMMARY & CONCLUSIONS 

In this paper, we have consider two interactive speech processing 
frameworks for in-vehicle systems. First, we considered 
integrating audio-visual processing for localization the primary 
speech for a driver using a route navigation system. Integrating 
both visual and audio content allows us to reject unintended 
speech to be submitted for speech recognition within the route 
dialog system (i.e., a 40.75% improvement). Next, we considered 
a combined multi-channel array processing scheme based on 
CFA with a spectral constrained iterative Auto-LSP and auditory 
masked GMMSE-AMT-ERB processing for speech 
enhancement. The combined scheme takes advantage of the 
strengths offered by array processing methods in noisy 
environments, as well as speed and efficiency for single channel 
methods. We evaluated the enhancement methods on a section of 
the TIMIT corpus using four different actual noise conditions. 
We demonstrated a consistent level of noise suppression and 

voice communication quality improvement using the proposed 
method as reflected by an overall average 26dB increase in 
SegSNR from the original degraded audio corpus. In the future, 
we plan to study algorithm sensitivity to more time varying noise 
sources as well as reverberant environments. These contributions 
suggest that improvements for interactive systems for in-vehicle 
systems such as multi-sensor based schemes and assist 
frameworks for hearing-impaired users can expand the use of in-
vehicle route navigation systems as well as hands-free and 
human communication devices for cars.  
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