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ABSTRACT

In this paper, we present an overview ofEnvironmental Sniffing
[1, 2] framework with current extensions to the system. The frame-
work of Environmental Sniffing is focused on detection, classi-
fication and tracking changing acoustic environments. Here, we
extend the framework to detect and track acoustic environmental
conditions which are determined in an unsupervised approach as
opposed to the supervised approach employed in [1, 2]. Knowl-
edge extracted about the acoustic environmental conditions is used
to determine which environment dependent speech recognizer to
use. Critical Performance Rate (CPR), previously considered in [1,
2], is also presented. The sniffing framework is compared to a
ROVER solution for automatic speech recognition (ASR) using
different noise conditioned recognizers in terms of Word Error
Rate (WER) and CPU usage. Results are presented in this paper
for supervised noise analysis. Results show that the model match-
ing scheme using the knowledge extracted from the audio stream
by Environmental Sniffing does a better job than a ROVER solu-
tion both in accuracy and computation. A relative11.1% WER
improvement is achieved with a relative75% reduction in CPU
resources.

1. INTRODUCTION

Significant advances in ASR technology have been achieved in
applications where the environmental noise condition is constant.
Most recently, ASR research focus has shifted to real-world en-
vironments where changing environmental noise conditions repre-
sent significant challenges in maintaining ASR performance.

All efforts in the field of noisy speech recognition have been
directed at reducing the mismatch between training and operating
conditions such as speech enhancement, noise resistant features,
re-training and multi-style training, and model adaptation. Each
solution has both advantages and disadvantages [3].

Today, state of the art ASR systems use a parallel bank of
recognizers in a ROVER paradigm [4] to take advantage of the
methods mentioned above. This framework seeks to reduce word
error rates for ASR by exploiting differences in the nature of the er-
rors made by multiple speech recognizers which use different fea-
tures in the feature extraction step, different noise compensation
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schemes in the enhancement step, or different model adaptation
schemes. The disadvantage of this framework is the high compu-
tational power it requires. There are also many open questions: for
example how important is the combination order of the system hy-
potheses?, which recognizers should be used?, how many systems
should we combine?, is it advantageous to preprocess or normalize
the systems’ outputs prior to combination? Most researchers take
the approach of using more recognizers, and try to make each ASR
engine different in some meaningful way (i.e., different features,
trained in different noise, etc.) to leverage the potential differences
in recognition errors.

In [1, 2], we addressed the problem of changing acoustic en-
vironmental conditions in speech tasks by proposing a new frame-
work entitledEnvironmental Sniffingto detect, classify and, track
changing acoustic environmental conditions and extract knowl-
edge about the environmental noise. The goal is to do smart track-
ing of environmental conditions and direct the ASR engine to use
a solution specific to each environmental condition. In our previ-
ous studies[1, 2], a supervised training process with pre-defined
noise types in car environment was used. An alternative approach
would be to consider an unsupervised training method with no
prior noise type list. To do this, here, we use BIC (Bayesian In-
formation Criteria) based segmentation and clustering to obtain
noise entries without associated physical events. In applications
(e.g., digital archives, etc.) where it is not feasible to manually
segment and label the different noise types (i.e., large number of
noise types might result in inconsistent human labeling), unsuper-
vised acoustic noise analysis gains importance.

The organization of our paper is as follows. In Section 2,
we present a background on noisy speech recognition. In Section
3, we specialize the general framework of sniffing environmental
noise for an in-vehicle hands-free digit recognition task. In Section
5, we present the unsupervised noise analysis module that consists
of BIC based segmentation and clustering. In Section 4, algorithm
formulation of environmental sniffing in a noisy-speech scenario
is presented. Section 6 includes the formulation of the critical per-
formance rate (CPR) of Environmental Sniffing for the digit car
task. In Section 7, evaluations of the framework integrated into an
in-vehicle ASR engine is presented. Section 8 discusses some fur-
ther research issues for sniffing with conclusions given in Section
9.
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Fig. 1. How a proposed Environmental Sniffer works.

2. BACKGROUND ON ROBUST SPEECH RECOGNITION

All efforts in the field of noisy speech recognition have been di-
rected at reducing the performance mismatch between training and
operating conditions. These techniques are grouped into the fol-
lowing categories:

• Re-Training & Multi-Style Training

• Speech Enhancement & Feature Enhancement

• Noise Resistant Features

• Model Adaptation

In the re-training method, an “environment-dependent” sys-
tem is re-trained with data from new testing environments. The
main disadvantage of this technique is the lack ofa priori knowl-
edge of environmental characteristics. In addition to this, data
collection and transcription is time consuming and the training
process is extremely computationally expensive.

In multi-style training, an “environment-independent” system
is trained by pooling data from different acoustical environments.
The disadvantage of this method is the lack of sufficient environ-
ments needed to achieve environment independence. Also, it is
unclear how speech from diverse environmental conditions con-
tributes to the overall speech recognition model.

Most early work towards robustness has been derived from
classical techniques developed in the context of speech enhance-
ment ([5] offers a good historical summary, and [6] represents a
more recent summary on enhancement techniques). The goal is to
transform noisy speech into a reference environment, and recog-
nize it with a system trained in the reference environment. Speech
enhancement methods offer the distinct advantage of requiring no
training data, and can be enabled or disabled with limited changes
to the subsequent speech task.

In the robust features method, it is assumed that the system
is noise independent, and uses the same system configuration for
both noisy and clean speech recognition. The goal is to derive
noise resistant parameters. One of the advantages of this technique
is that in general weak or no assumptions are made about the noise
(i.e., no explicit estimation of the noise statistics is required). On
the other hand, this could be a shortcoming since it is impossible to
make full use of characteristics specific to a particular noise type.

Model adaptation schemes transform the speech models cre-
ated in the reference environment in order to accommodate the
evolving noisy environment. Since accurate estimates of the noise

statistics are required, this method can be sensitive to varying SNR
(signal-to-noise ratio) and non-stationary noise environments.

While speech or feature enhancement, robust features, or model
adaptation can be effective for robust speech recognition in noise,
it is difficult to outperform a system that is trained in the same
noise type and level when noisy conditions are stationary. While
speech enhancement and model adaptation methods typically have
access to a short segment of noise for statistical characterization, a
full re-training approach typically requires several hours of speech
in noise data. As such, many ASR researchers have migrated to-
wards dedicated trained systems.

In more recent studies, as computational power has increased
with the help of high-speed computers, a parallel bank of recogniz-
ers has been used in a Recognizer Output Voting Error Reduction
(ROVER) paradigm [4]. This method seeks to reduce word error
rates for dedicated ASR engines by exploiting differences in the
nature of the errors made by multiple speech recognizers which
use different features in the feature extraction step, different noise
compensation schemes in the enhancement step, or different model
adaptation schemes. The disadvantage of this method is the high
computational power it requires, making it less feasible for real-
time or dialog applications (i.e., it is not uncommon for a system
to run100 times slower than real-time). In addition, it is not a gen-
eral solution for other speech systems (e.g., speech coding, speech
enhancement, etc.).

3. SYSTEM ARCHITECTURE

A proposed general system architecture diagram for Environmen-
tal Sniffing [1] is shown in Fig. 1. Digitized speech is denoted as
s(n), captured from an input sensor (i.e., single or multi-microphone)
and acoustic environmental information asI(n) which is a func-
tion of the input signal.

In a sample scenario,s(n) may be the audio data obtained in
a vehicle with a microphone array, the speech task may include
model adaptation within an ASR system, andI(n) may consist
of the existing noise types with time tags and the power spectral
estimates of the environmental noise with a stationarity measure.
Here,I(n) could also contain a suggestion to use one of several
adaptation schemes (Jacobian adaptation [7], MLLR [8], PMC [9],
etc.), or alternative parameterization (MFCC, LPC, PLP [10], SBC
[11], WPP [11], etc.) which gives the best performance for the
environmental noise knowledge estimated through Environmental
Sniffing.



In addition to environmental noise knowledgeN(n), I(n)
may containS(n)- knowledge about the speaker identity andC(n)-
channel information for the speech tasks having multi-SECchar-
acteristics. Knowledge fromS(n) can be used to monitor the
speaker’s speaking style. It may consist of the accent and stress
levels or emotion of the speaker so that correct pronunciation and
duration modeling, or acoustic model compensation techniques
can be employed [12]. This knowledge may be used in speech cod-
ing to improve the naturalness of speech.C(n) may provide the
knowledge of channel type (bandwidth, type of distortion, etc.),
impact of channel (fade-out, channel bias, etc.) to improve the
ASR system performance by having reliable parameters for fea-
ture enhancement or model adaptation.

In the remainder of this study, we focus on changing acoustic
environmental conditions and construct theEnvironmental Sniffing
framework to extract environmental noise knowledgeN(n) from
an input audio stream. In other words,I(n) will consist of only en-
vironmental noise knowledgeN(n), with a constant channelC(n)
and speakerS(n) traits.

Fig.2 shows a proposed robust ASR system for in-vehicle route
information originally presented in [15].
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Fig. 2. An in-vehicle digit recognition system.

The motivation for selecting this environment is the huge di-
versity of acoustic environmental conditions and the need to main-
tain near real-time performance for route navigation dialogs.

In Fig. 2, we see that environmental sniffing plays a central
role in determining the environment information which could be
used to direct front-end array processing, parameterization, speech
enhancement, model adaptation, or ASR model selection for effec-
tive speech recognition. Therefore, the environmental sniffer could
be a passive system and simply provide informationI(n) to any
prior or subsequent speech processing tasks. In contrast, the snif-
fer could instead take control and direct appropriate microphone
array processing, feature selection/processing, and/or adjust model
adaptation depending on the environmental knowledge and confi-
dence. For the purpose of this paper, the Environmental Sniffing
framework will be employed for ASR model selection.

4. ENVIRONMENTAL SNIFFING

In [1], we focused on extracting knowledge concerning the acoustic
environmental noise using a noise-only audio database contain-
ing 8 noise conditions in a car environment. In [2], we presented

a broad class monophone recognition based system for sniffing
noisy-speech data, as shown in Fig. 3. In addition to 8 noise condi-
tions, the acoustic condition set contains also the clean condition-
CL as shown in Table 1.

Acoustic Condition Set
1 N1 Idle noise consisting of the engine running

with no movement and windows closed
2 N2 City driving without traffic and windows closed
3 N3 City driving with traffic and windows closed
4 N4 Highway driving with windows closed
5 N5 Highway driving with windows 2 inches open
6 N6 Highway driving with windows half-way down
7 N7 Windows 2 inches open in city traffic
8 NX Others
9 CL Clean (i.e., noise-free)

Table 1. In-vehicle acoustic conditions considered.

After defining a set of broad phone classes (e.g., STP- stop,
FRC- fricative, NSL- nasal, VWL- vowel, SIL- silence, etc.), an
HMM is trained for each(broad phone class, acoustic condition)
pair. As an example, an HMM for the pair (FRC,N1) is trained
from a clean database of fricatives degraded by acoustic condition
N1. These acoustic models are used during the broad class mono-
phone recognition.
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Fig. 3. Environmental Noise Sniffing.

As Fig. 3 shows, the incoming audio stream is first segmented
into acoustically homogeneous speech blocks using ourT 2-BIC [14]
segmentation scheme with a low false alarm penalty (i.e. false
alarms are tolerable to ensure we capture all potential marks, both
true and false). For each segment, a lattice is generated in an FST
(Finite State Transducer) format via phoneme recognition. During
decision smoothing, the resulting phone-lattice of each segment
is combined with an FST representing the noise language model.
The costs of noise transitions in the FST representing the noise
language model is inversely proportional with the transition prob-
abilities presented in [1].

5. UNSUPERVISED NOISE ANALYSIS

In [1, 2], we chose to employ supervised training using human
transcribed (e.g., pre-defined noise types) noise data for our eval-
uations. We did this in order to tag noise events for in-vehicle



speech dialog systems. An alternative approach is to consider an
unsupervised training method with no prior noise type list.

In our Environmental Sniffing framework, we propose to use
BIC based segmentation and clustering to obtain noise entries with-
out associated physical events. After extracting homogeneous noise
segments via BIC based segmentation, we use agglomerative bottom-
up BIC based clustering to merge acoustically similar noise seg-
ments.

Assuming that each acoustic homogeneous noise block is mod-
eled as one multivariate Gaussian process, we can consider the
audio stream as two nested models :M whereX = {xi|i =
1, 2, . . . , N} is independent and identically distributed as a sin-
gle GaussianN(µ, Σ), andM2 where the initial frames{xi|i =
1, 2, . . . , b} are drawn from one GaussianN(µ1, Σ1) while the
remaining frames{xi|i = b + 1, b + 2, . . . , N} are drawn from
another GaussianN(µ2, Σ2). Using this representation, the BIC
difference between the two models is found as,

4BICb =
1

2
(N log | Σ | −b log | Σ1 | −(N − b) log | Σ2 |)

− 1

2
λ(d +

1

2
d(d + 1)) log N, (1)

whereλ is the penalty factor to compensate for small sample size
cases, and d is the cepstral feature dimension.

Initially, each segment is a cluster by itself and the clusters are
modeled by a single Gaussian. At each step of the clustering algo-
rithm, a similarity measure is calculated for each pair of clusters.
The two closest clusters are merged if the corresponding BIC vari-
ation, given by Eq.1, is negative. If the difference is positive, the
algorithm is stopped.

6. CRITICAL PERFORMANCE RATE

In [1], we defined a critical performance rate (CPR) in a general
sense. In [2] we specialized the formulation of CPR to a spe-
cific case where Environmental Sniffing framework is used for
model selection within an ASR system. The Environmental Sniff-
ing framework determines the initial acoustic model to be used
according to the environmental knowledge it extracts. The knowl-
edge in this context, will consist of the acoustic condition types
with time tags. Following is the formulation of CPR revisited:

Let us denote the error matrix for noise classification asε:

ε =

2
6664

e11 e12 . . . e1N

e21 e22 . . . e2N

...
...

. . .
...

eN1 eN2 . . . eNN

3
7775 . (2)

For i = j, 1 ≤ i, j,≤ N , eij is zero, and fori 6= j, eij is the
classification error rate (in a range 0-1) for the error type where
theith noise class is classified as thejth noise class.

Assume that there areN initial acoustic models1 to be used
during recognition, each corresponding to an environmental con-
dition. These models can be trained by simply re-training HMMs
for N different acoustic conditions. Assume that there is enough
diversity among noise conditions so that for a noise type during

1If there areM (M ≤ N ) initial models, theW matrix will still be
NxN, since some noise classes will use the same acoustic model, and the
cost of errors among these noise classes will be zero.

decoding, using the matched acoustic model as an initial model
during model adaptation yields the lowest WER. Let us define a
matrixW as follows:

W =

2
6664

w11 w12 . . . w1N

w21 w22 . . . w2N

...
...

. . .
...

wN1 wN2 . . . wNN

3
7775 (3)

wherewij represents the WER value for the case where test tokens
are from theith noise class, but thejth acoustic model which is
trained from thejth acoustic condition is used as an initial model.
Using the matrixW , we can assign a cost value for each error
type so that each error rateeij can be weighted by the normalized
cost values to calculate the Critical Performance Rate (CPR) of
the Environmental Sniffing framework. For the error type where
the ith noise class is classified as thejth noise class, the cost is
∆wij−ii = wij − wii, which is the performance deviation of
the ASR engine by using thejth acoustic model during decoding
instead of using the correctith acoustic model.

Since some noise conditions occur more frequently than oth-
ers, each noise condition will have ana priori probability denoted
as follows:

→
a =

�
a1 a2 . . . aN

�
(4)

Now, we can formulate the Critical Performance Rate as:

CPR = 1−
NX

i=1

ai

NX
j=1

∆wij−ii

nij
eij

= 1−
NX

i=1

ai

NX
j=1

wij − wiiPN
k=1,k 6=i

wik−(N−1)wii

N−1

eij

= 1−
NX

i=1

ai

NX
j=1

wij − wiiPN
k=1 wik−Nwii

N−1

eij

= 1−
NX

i=1

ai

NX
j=1

Cijeij (5)

wherenij is the normalization term andCij is the normalized cost
value for the error type where theith noise class is classified as the
jth noise class.

In matrix form, Eq. 5 becomes:

CPR = 1− diag
n
C · εT

o
·→aT

(6)

whereC is the normalized cost matrix having entriesCij .
If all noise conditions have equala priori probabilities1/N ,

and all error types have equal costs (e.g., each error type has the
same impact on the subsequent system’s performance) then we ob-
tain

CPR = 1−
NX

i=1

1

N

NX
j=1

eij (7)

The goal, in terms of performance, is to optimize the critical
performance rate rather than optimizing the environmental noise
classification performance rate, since it is more important to detect
and classify noise conditions that have a more significant impact
on ASR performance.



We can use Eq. 5 by settingnij = 1 (without normalizing
the costs) to calculate1 − CPR, which will actually be the ex-
pected performance deviation from the highest achievable perfor-
mance when we use Environmental Sniffing. In our example, us-
ing the matched acoustic model for an environmental condition
will achieve the lowest WER. Using the expected performance de-
viation, we can estimate the performance of model matching em-
ploying the Environmental Sniffer.

7. EVALUATIONS

In our evaluations, we degraded the TI-DIGIT database at random
SNR values ranging from -5 dB to +5 dB (i.e., -5,-3,-1,+1,+3,+5
dB SNR) with 8 different in-vehicle noise conditions using the
noise database from [1]. A 2.5-hour noise data set was used to
degrade the training set of 4000 utterances, and the 0.5 hour set
was used to degrade the test set of 500 utterances (i.e., open noise
degrading condition). Each digit utterance was degraded with only
one acoustic noise condition. Next, an HMM was trained for each
(broad phone class, acoustic condition)pair. The phoneme classes
for digits were mapped to 7 broad classes (including SIL- silence).
Since we have 9 acoustic conditions (including CL- clean) in the
acoustic condition set, at the end we had 7 x 9 = 63 HMMs. Each
(broad phone class, acoustic condition)was listed in the lexicon
during decoding. A total of 7 silence models were also used as
filler models.

Each digit utterance was decoded into a sequence of(broad
phone class, acoustic condition)pairs. At each leaf of the lattice,
the (broad phone class, acoustic condition)pair was mapped to
the corresponding acoustic condition (e.g., STP-N1 was mapped to
N1). The resulting lattice in FST format is combined with the lat-
tice representing the noise language model to find the most likely
noise sequence.

For acoustic model training and decoding, we used CSLR’s
Large Vocabulary Continuous Speech Recognizer SONIC [16].
AT&T’s FSM Toolkit [17] was used to combine the phone-lattice
and the noise language model.

7.1. Sniffing Results:

Using the sniffing framework presented in Sec. 4, each utterance
was assigned to an acoustic condition. Using the fact that there
was only one acoustic condition within each utterance, the En-
vironmental Sniffing framework did not allow noise transitions
within an utterance. A noise classification rate of82% was ob-
tained. From this, a 9x9 error matrixε was generated for use in
digit recognition.

7.2. Digit Recognition Results:

7.2.1. Development Phase:

Environmental condition specific acoustic models were trained and
used during recognition tests. MatrixW was generated by testing
different acoustic conditions using different acoustic models. By
using theW matrix, we calculated the normalized cost matrixC
using Eq. 5. Using Eq. 6, with thea prior noise probabilities,

→
a =

�
0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.05

�
,

CPR was calculated as 92.1%, and the expected performance devi-
ation was found to be 0.22% when the Environmental Sniffer uses
the knowledge that only one acoustic condition is present within
each utterance.
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Fig. 4. Sniffing performance for each noise type (A) with(left bar
in each pair)/(B) without(right bar in each pair) the prior knowl-
edge that there was one environmental condition present in each
utterance.

7.2.2. Test Phase:

Having established the environmental sniffer, and normalized cost
matrixC for directing ASR model selection, we now turn to ASR
system evaluation. We tested and compared the following 3 system
configurations:

S1: Model matching was done usinga priori knowledge of the
acoustic noise condition.

S2: Model matching was done based on the environmental acoustic
knowledge extracted from Environmental Sniffing.

S3: All acoustic condition dependent models were used in a paral-
lel multi-recognizer structure (e.g. ROVER) without using
any noise knowledge and the recognizer hypothesis with the
highest path score was selected.
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Fig. 5. Comparison of system configurations S1, S2, S3.

As shown if Fig. 5, system S1 achieved the lowest WER (i.e.,
3.01%) since the models were matched perfectly to the acoustic
condition during decoding.From the development phase, we know
that the expected performance deviation was0.22 for a model
matching scheme employing Environmental Sniffing, which means
that we can expect a WER value of 3.01+0.22=3.23% for S2. Ex-
perimentally, the WER for S2 was 3.2% using 2 CPU’s (1 CPU for



digit recognition, 1 CPU for sniffing acoustic conditions), which
was close to the expected value of 3.23% (Note: in Fig. 5, we
plot system S2 2 CPU even though only 1 ASR engine was used).
S3 achieved a WER of 3.6% by using 8 CPU’s. When we com-
pare S2 and S3, we see that a relative11.1% WER improvement
was achieved, while requiring a relative75% reduction in CPU
resources. These results confirm the advantage of using Environ-
mental Sniffing over a ROVER paradigm.

8. DISCUSSION

There are two critical points to consider when integrating Environ-
mental Sniffing into a speech task. First, and the most important,
is to set up a configuration such as S1 where prior noise knowl-
edge can be fully used to yield the lowest WER. This will require
understanding of the sources of errors and finding specific solu-
tions assuming that there is prior acoustic knowledge. For exam-
ple, knowing which speech enhancement scheme or model adap-
tation scheme is best for a specific acoustic condition is required.

Secondly, a reliable cost matrix should be provided to the En-
vironmental Sniffing so the subsequent speech task can calculate
the expected performance in making an informed adjustment in the
trade-off between performance and computation. For our experi-
ments, we considered evaluation results for Environmental Sniff-
ing where it is employed to find thehighestpossible acoustic con-
dition so that correct acoustic condition dependent model could be
used. This is most appropriate for the goal of determining a sin-
gle solution for the speech task problem at hand. If the expected
performance for the system employing Environmental Sniffing is
lower than the performance of a ROVER system, it may be use-
ful to find the n most probable acoustic condition types among
N acoustic conditions. In the worst case, the acoustic condition
knowledge extracted from Environmental Sniffing could be ig-
nored and the system will reduce to the traditional ROVER so-
lution.

Finally, in an ASR task, in addition to determining the num-
ber of systems that should be combined, even a ROVER paradigm
could take advantage of Environmental Sniffing to address open
questions such as the combination order of the ASR system hy-
potheses, engage or disable preprocessing or normalization of sys-
tem outputs prior to combination, etc. The goal therefore has been
to emphasize that direct estimation of environmental conditions
should provide important information to tailor a more effective so-
lution to robust speech recognition systems.

We are currently working on evaluating our unsupervised noise
analysis module within the existing framework. By the time of the
conference, we will be able to present comparison between su-
pervised noise analysis (human transcribed - segmented and clus-
tered) and unsupervised noise analysis (automatically transcribed
- segmented and clustered). Results for Environmental Sniffing vs
ROVER in an in-vehicle recognition task will be presented by the
time of the conference.

9. CONCLUSION

In this study, we have extended our previous proposedEnviron-
mental Sniffing[1, 2] framework by adding an unsupervised noise
analysis module. We integrated the sniffing framework into an
in-vehicle hands-free digit recognition system. The critical per-
formance rate (CPR) was formulated for this task. The sniffing
framework was compared to a ROVER solution in terms of WER

and CPU usage in a model matching task where environmental
condition dependent models were used during decoding. Results
are presented by using supervised noise analysis module. In our
experiments, the presented framework consistently outperformed
the original ROVER solution by 11.1% in WER, while requiring
75% less CPU resources.
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