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ABSTRACT

This paper describes a new single-channel in-car speech enhance-
ment method that estimates the log spectra of speech at a close-
talking microphone based on the nonlinear regression of the log
spectra of noisy signal captured by a distant microphone and the
estimated noise. We compare the speech enhancement perfor-
mance of proposed method to those ofspectral subtraction(SS)
andshort-time spectral attenuation(STSA) based methods. The
proposed method provides significant overall quality improvements
in our subjective evaluation on the regression-enhanced speech.
Based on our isolated word recognition experiments conducted
under 15 real car environments, the proposed adaptive nonlinear
regression approach shows an advantage in average relative word
error rate (WER) reductions of 54.2% and 16.5%, respectively,
compared to original noisy speech and ETSI advanced front-end.

1. INTRODUCTION

Among a variety of speech enhancement methods,spectral sub-
traction(SS) [1] andshort-time spectral attenuation(STSA) based
methods [2] [4] are commonly used. Most SS based methods make
assumptions about the independence of speech and noise spectra,
allowing for simple linear subtraction of the estimated noise spec-
tra. Although scaling factors for emphasis or deemphasis of the
estimated noise have been proposed to reduce “musical tone” ar-
tifacts, the specifications of the scaling factors are usually done
experimentally. STSA based methods can lead to a nonlinear spec-
tral estimator by introducing a priori SNR; however, they require
assumptions aboutad hocstatistical distributions for speech and
noise spectra [3] [4]. Usually both SS and STSA based methods
can only handle additive noise.

In previous work, we proposed a new and effective multi-
microphone speech enhancement approach based on multiple re-
gression of log spectra [5] that used multiple spatially distributed
microphones. Their idea is to approximate the log spectra of a
close-talking microphone by effectively combining of the log spec-
tra of distant microphones. The approach made no assumption
about the positions of the speaker and noise sources with respect to
the microphones, and worked in very small computation amounts.
It has been shown to be very effective based on our previous in-car
speech recognition experiments [6].

In this paper, we extend the idea to single-microphone cases
and propose that the log spectra of clean speech are approximated
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through the nonlinear regression of the log spectra of the observed
noisy speech and the estimated noise. The proposed approach,
which can be viewed as generalized log spectral subtraction, has
the following properties: 1) It does not need any assumption con-
cerning independence and statistical distribution of speech and noise
spectra; 2) It can deal with a wide range of distortions, rather than
only additive noise; 3) Regression weights are obtained through
statistical optimization. Once the optimal regression weights are
obtained in the learning phase, they are utilized to generate the
estimated log spectra in the test phase, where clean speech is no
longer required.

The main aim of this paper is to describe the proposed method
and evaluate its performance on speech enhancement and recog-
nition. In Section 2, we present the proposed regression-based
speech enhancement algorithm. In Section 3, we present subjec-
tive evaluation experiments on regression-enhanced speech. We
describe our speech recognition experiments using the proposed
method in Section 4 and conclusions are drawn in Section 5.

2. REGRESSION-BASED SPEECH ENHANCEMENT

Let s(i), n(i), andx(i) respectively denote the reference clean
speech (referred to as speech at a close-talking microphone in this
paper), noise, and observed noisy signals. By applying a window
function and analysis using short-time discrete Fourier transform
(DFT), in the time-frequency domain we haveS(k, l), N(k, l),
andX(k, l), wherek and l denote frequency bin and frame in-
dexes, respectively. After the log operation of the amplitude, we
obtainS(L)(k, l), X(L)(k, l), andN (L)(k, l):

S(L)(k, l) = log |S(k, l)|,
X(L)(k, l) = log |X(k, l)|,
N (L)(k, l) = log |N(k, l)|.

The idea of regression-based speech enhancement is to ap-
proximateS(L)(k, l) by combiningX(L)(k, l) and N (L)(k, l),
as shown in Fig. 1. Let̂S(L)(k, l) denote the estimated version
obtained from the inputs ofX(L)(k, l) andN (L)(k, l). We can
obtain Ŝ(L)(k, l) by employing amulti-layer perceptron(MLP)
regression method, where a network with one hidden layer com-
posed of eight neurons is used:

Ŝ(L)(k, l) = bk +
8X

p=1

�
wk,p tanh(f(X(L)(k, l), N (L)(k, l))

�
,
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Fig. 1. Concept of regression-based speech enhancement.

wheretanh(·) is the tangent hyperbolic activation function and

f(X(L)(k, l), N (L)(k, l)) = bk,p +

wx
k,pX(L)(k, l) + wn

k,pN (L)(k, l).

Herep is the index of the hidden neurons. The parameters (re-
gression weights)Θ = {bk, wk,p, wx

k,p, wn
k,p, bk,p} are found by

minimizing the mean squared error (MSE):

E(k) =

JX
l=1

[S(L)(k, l)− Ŝ(L)(k, l)]2, (1)

through the back-propagation algorithm [7]. Here,J denotes the
number of training examples (frames). OnceŜ(L)(k, l) is ob-
tained for each frequency bin, enhanced speech can be generated
by taking the exponential operation and performing short-time in-
verse discrete Fourier transform (IDFT) with the combination of
the phase of the observed noisy speech.

The proposed approach is cast into single-channel methodol-
ogy because once the optimal regression parameters are obtained
by regression learning, they can be utilized to generateŜ(L)(k, l)
in the test phase, where the speech of the close-talking microphone
is no longer required. Multiple regression means that regression
is performed for each frequency bin. The use of minimum mean
squared error in the log spectral domain is motivated by the fact
that log spectral measure is more related to the subjective qual-
ity of speech [8] and that some better results have been reported
with log distortion measures [9] [10]. Although both the proposed
regression-based method andlog-spectra amplitude(LSA) estima-
tor [4] employ minimum mean squared errors (MMSE) cost func-
tion in the log domain, the former makes no assumptions regard-
ing the distributions of speech and noise spectra. The proposed
method differs from [10] in that it does not need to estimate the
mean and variance of the log spectra of clean speech, which is
nontrivial because only noisy speech is available. Moreover, the
proposed method employs more general regression models and is
frame-based (without delay).

3. SPEECH ENHANCEMENT PERFORMANCE

3.1. Experimental data

The speech data used are from CIAIR in-car speech corpus. Speech
captured by a microphone at the visor position is used in the fol-
lowing experiments. Speech collected at a close-talking micro-
phone (with a headset) is used for reference speech. The test

�����������	��
���

� ����
�
�
�
	�

� 
���������
����
��� ���!��"

#%$�&(')$�*�*,+.-0/21 -,34$�5768':9�+;/�+</=& >@?BAC*�D�$�9�E!$�'@*�F�G�H�HJIK-L'M3N*�O

PQ$�*R6�3�9S6T9U>VGW*�D�$=9�E!$�'X*RFRY�H�HJIK-L'M3N*=O

��Z��!� ��[ � ��Z�\!
�
!�
�C
��]�^��� ���!��"


 ��
�� �
��� � 
.�_� � 
���


Z����

��� � 
��_� � 
���


Z����

Z����


!��
�� �
��� � 
��_� � 
���


`badc eCe

`badc eCe

� 
��!���0�C
����
��� ���!��" Z����`fa]c eCe

Z����

��" ��� �

��gB�

hikjl m

nporqBs

Fig. 2. Diagram of regression-based speech enhancement.

speech was based on 50 isolated word sets under seven real driv-
ing conditions listed in Table 1. Fig. 2 shows a block diagram of
the regression-based speech enhancement system for a particular
driving condition. For each driving condition, the data uttered by
12 speakers were used for learning the regression weights, and the
remaining 300 words from different six speakers (three male and
three female) were used for open testing.

For comparison, aparametric formulation of the generalized
spectral subtraction(PF-GSS) [11] and alog-spectra amplitude
(LSA) estimator [4] were also applied. For PF-GSS, the version
with constraint, which was suggested by the authors, was used.
An a priori SNR was calculated by the well-known “decision-
directed” approach. Animproved minima controlled recursive av-
eraging(IMCRA) method [12] was used to estimate noise for all
the enhanced methods. We selected PF-GSS and LSA because
they can provide good noise reduction and reduce the annoying
“musical tone” artifacts of enhancement schemes based on conven-
tional spectral subtraction while maintaining relatively low com-
putational complexity. Four types of speech (or algorithms) must
be evaluated:

1. original: observed noisy speech with no processing;

2. PF-GSS: speech enhanced using the PF-GSS method;

3. LSA: speech enhanced using the LSA method;

4. regression: speech enhanced using the proposed regression
method.

3.2. Subjective evaluations

For each driving condition, five speech samples were randomly se-
lected from the 300 test signals. The characteristics of enhanced

Table 1. Seven driving conditions for speech enhancement evalu-
ation

driving environment in-car state

city driving normal
city driving CD player on
city driving air-conditioner on at high level
city driving window open
idling normal
expressway driving normal
expressway driving window open
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Fig. 3. Subjective MOS (averaged over seven driving conditions).

speech signals differ according to driving conditions and algo-
rithms. Therefore, the total number of speech samples was five
samples× seven driving conditions× four algorithms = 140.

Twelve test listeners or subjects (eight male and four female
students aging from 19 to 28 years) participated in the evaluations
of the original and enhanced speech. They had no prior experience
in psychoacoustic measurements and no history of hearing prob-
lems. They were seated in a soundproof booth. Signal presentation
was controlled by computer. Signals were fed to listeners via a
Sony-dynamic stereo headphone (MDR-CD900ST). Presentation
level was individually adjusted so that perception was “loud but
still comfortable” to guarantee that most signal parts were audible
to the listener.

One reliable and easily implemented subjective measure is
Mean Opinion Score(MOS). In this method, human listeners rate
test speech on a five-grade scale. Since MOS introduces listener
judgement bias, Hansen and Pellom suggested incorporating a sub-
jective Pairwise Preference Test(PPT) [13]. In PPT, a series of
pairwise randomized processed signals are presented, and listen-
ers simply select the one they prefer. An advantage of PPT over
MOS is its ease for subjects and the elimination of judgement bias
[14].

We performed both MOS and PPT on overall quality. For
MOS, listeners rated the speech signals on a five-grade test based
on Absolute Category Rating (ACR). The four kinds of speech sig-
nals, which were randomly arranged, were presented as one mea-
surement block. To adjust the rating differences, listeners evalu-
ated speech signals corrupted by different noise levels and process-
ing artifacts at the beginning of the subjective quality assessment.
For PPT, the four algorithms described in the last subsection were
compared. The six comparisons were presented as one block and
randomly arranged in each of these blocks. Listeners were asked
to state a preference for one of the two presented algorithms.

Fig. 3 shows the subjective MOS results for the four algo-
rithms averaged over the seven driving conditions. It is found
that the subjective MOS of PF-GSS and LSA are lower than the
original observed noisy speech. This indicates that PF-GSS and
LSA enhancement methods seem to decrease overall speech qual-
ity rather than to increase it because of a loss or distortion of
speech components introduced. This is in line with the results
of most publications (e.g., [14]) on single-microphone speech en-
hancement schemes. Compared to PF-GSS, LSA obtained higher
MOS for the less “musical tone” artifacts introduced, while the
regression-based enhancement method yielded higher subjective
MOS.

The PPT results are shown in Table 2. The numbers in each

Table 2. Preference rates between algorithms
original PF-GSS LSA regression

original 0 75.48% 51.67% 31.43%
PF-GSS 24.52% 0 23.10% 10.24%

LSA 48.33% 76.90% 0 25.00%
regression 68.57% 89.76% 75.00% 0

row, which were calculated as vote percentages, denote the pref-
erence rates of one algorithm to another algorithms. As same as
MOS measure, the PF-GSS and LSA methods are not preferred
over the original observed speech. Compared to PF-GSS, LSA
gives higher preference scores. The regression-based enhancement
method achieves significantly higher preference rates than all other
algorithms, which clearly demonstrates the superiority of the pro-
posed method.

4. SPEECH RECOGNITION EXPERIMENTS

We performed in-car speech recognition experiments using regres-
sion methods. Test data are extended to 50 word sets under all
of the 15 real car driving conditions, as listed in Table 3. 1,000-
state triphone Hidden Markov Models (HMM) with 32 Gaussian
mixtures per state were used for acoustical modeling. They were
trained over a total of 7,000 phonetically balanced sentences col-
lected at the visor microphone (3,600 in the idling-normal condi-
tion, and 3,400 while driving on the streets near Nagoya university
(city-normal condition)). The feature vector is a 25-dimensional
vector (12 CMN-MFCC + 12∆ CMN-MFCC +∆ log energy).

The above regression algorithms are implemented in each fre-
quency bin mainly because they allow re-synthesis of estimated
speech, which is crucial for speech enhancement. However, for
speech recognition one may directly obtain log mel-filter bank
(MFB) outputs, i.e., each log MFB output of clean speech is es-
timated using the nonlinear regression method described in Sec-
tion 2. A diagram of in-car regression-based speech recognition
for a particular driving condition is given in Figure 4. Once the
estimated log MFB output is obtained for each mel-filter bank,
the estimated log MFB vectors are transformed into mean normal-
ized mel-frequency cepstral coefficients (CMN-MFCC) for recog-
nition.

For comparison, we also performed recognition experiments
using a linear regression method and ETSI advanced front-end
[15]. In the linear regression method, no hidden layer (neurons)
was used. The acoustical model used for ETSI advanced front-
end experiments was trained over the training data processed with
ETSI advanced front-end. The recognition performance averaged
over the 15 driving conditions is given in Fig. 5. It is found that all

Table 3. 15 driving conditions (3 driving environments× 5 in-car
states)

idling
driving environment city driving

expressway driving
normal
CD player on

in-car state air-conditioner (AC) on at low level
air-conditioner (AC) on at high level
window (near driver) open
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Fig. 4. Diagram of regression-based speech recognition.

the enhancement methods outperform the original noisy speech.
LSA gives higher recognition accuracy than PF-GSS. ETSI ad-
vanced front-end very marginally outperforms LSA. Although lin-
ear regression is less effective than the conventional enhancement
methods, nonlinear regression achieves the best recognition per-
formance, outperforming ETSI advanced front-end by about 1.8%.

5. CONCLUSIONS

A regression-based speech enhancement method was proposed,
that approximates the log spectral of clean speech with the in-
puts of the log spectra of noisy speech and estimated noise. The
proposed method employs statistical optimization and makes no
assumptions about the independence or the distributions of the
speech and noise spectra. The proposed method provided con-
sistent improvements in our subjective evaluation of regression-
enhanced speech. The results of our studies on isolated word
recognition under 15 real car driving conditions show that the pro-
posed method outperforms conventional single-channel speech en-
hancement algorithms. Other methods for speech enhancement
may be combined with the proposed method to obtain improved
recognition accuracy in noisy environments. This method is ex-
pected to enhance recognition accuracy in very noisy situations
and to be applicable to a large number of real-life environments.
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