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ABSTRACT 

 
In this work, we study the individual as well as 
combined performance of various driving behavior 
signals on identifying the driver of a motor vehicle. 
We investigate a number of classifier fusion 
techniques to combine multiple channel decisions. 
We observe that some driving signals carry more 
biometric information than others. When we use 
trainable combining methods, we can reduce 
identification error significantly using only driving 
behavior signals. Classifier combination methods 
seem to be very useful in multi-modal biometric 
identification in a car environment. 

 
1. INTRODUCTION 

 
Studies and technological advances in biometric 
person identification promises a world with no keys 
or passwords where smart devices or systems 
around us can identify us from our biological or 
behavioural traits. Biometric person identification 
would also be useful in a car where most of us 
spend long hours every day. It may be beneficial to 
identify the driver of a vehicle for safety and 
comfort purposes [1].  
 
In-car person identification is a relatively new area 
where a few academic studies exist.  Earlier, we 
have studied techniques to combine information 
from video, audio and driving signals to identify a 
driver of a vehicle using a 20 person subset of the  
Nagoya University CIAIR database [1,2]. In that 
study, we have used feature fusion of acceleration 
and brake pedal pressure signals to perform 
identification. Thus, the separate effects of 
acceleration and brake pedal pressure were not 
clear. However, in this paper, we focus on 
individual identification performance of five 

different driving signals and their various 
combinations. We compare feature versus decision 
fusion in this scenario as well. 
 
This paper is organized in the following way. In 
section 2, we describe the types of driving 
behaviour signals of the CIAIR database [2]. We 
present our statistical GMM models for the driving 
signals in section 3. Fusion methods are explained 
in section 4. We present our experimental results in 
section 5 followed by the conclusions and future 
plans in the final section. 
 

2. TYPES OF DRIVING SIGNALS 
 

The Center for Integrated Acoustic Information 
Research (CIAIR) at Nagoya University has built a 
multi-modal corpus inside a vehicle, where each 
driver subject was required to carry out 
conversations with three different dialog systems 
while driving [2]. Data from 12 audio channels and 
3 video channels have been recorded for over 800 
drivers, both female and male. They have also 
collected five different “driving behavior signals” 
during theses sessions.  Driving behavior data is 
collected by 5 analog channels, each sampled at 1.0 
kHz with an unsigned 16-bit format.  

1. Break pedal pressure in Kgforce/cm.sq.: 0 - 
50 kgf/cm2 is mapped to 0 - 5.0V and linearly 
digitized in the range 0 to 32767. 

2. Accelerator pedal pressure in Kgforce/cm.sq.: 
0 - 50 kgf/cm2 is mapped to 0 - 5.0V and 
linearly digitized in the range 0 to 32767. 

3. Engine speed in rpm.: 0 - 8,000 rpm is 
mapped to 0 - 5.0V and linearly digitized in 
the range 0 - 32767. 



4. Vehicle speed in km/h.: 0 - 120 km/h is 
mapped to 0 - 5.0V and linearly digitized in 
the range 0 - 32767. 

5. Steering wheel angle in -1800 degrees to 
+1800 degrees; i.e., five CW and 5 CCW 
revolutions is linearly digitized in the range -
32769 to 32767. 

 
In this paper, we use these signals to try to identify 
driver identities. To extract features from these 
signals, we perform smoothing and noise removal 
in time domain followed by decimation. We also 
extract dynamic features by computing the first 
difference of time-domain samples. Fourier domain 
or cepstral features are normally used for speech. 
For driving signals, however, we use time domain 
signals after a smoothing stage to reduce noise. 
Unlike speech, there is no evidence of periodic 
(pitch) and frequency-related information in these 
driving signals. Frequency domain processing 
could be useful to remove noise in these signals. 
However, noise removal could be performed in 
time-domain as well. Thus, we only use the time-
domain signal directly in this work.  
We use statistical modelling to model these driving 
signals and their first differences. We provide the 
details of our modelling approach in the following 
section. 
 

3. MODELLING TIME-SERIES SIGNALS 
 
As many time-series signals are slowly varying, it 
is natural to assume quasi-stationarity for modeling 
purposes. This naturally leads to Hidden Markov 
Model type dynamic generative models to model 
time-series data. In biometric identification from 
time-series data, the underlying state topology of 
the signal is usually unclear (except in text-
dependent speaker recognition) and single-state 
probabilistic models perform well. This is true 
given that we use a parametric continuous 
distribution function with multiple modes to cover 
variations in a time-series signal. Gaussian mixture 
models (GMMs) are models that can approximate 
any smooth distribution, even if it has multiple 
modes. As long as we use enough number of 
mixtures in a GMM, we can obtain a good 
statistical model of time-series data. GMM 
modeling for driving signals were first used in [3] 

and we also used GMM models in [1] for modeling 
driving behavior. 
 
In GMM modeling, features are considered as 
independent identically distributed random vectors 
drawn from a GMM distribution: 
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where x represents the feature vector, kπ  are 
mixture weights and N( , , )k kx μ Σ are individual 
Gaussians for representing a particular subject 
under study, Si. For computational purposes,  
are chosen to be diagonal matrices. GMMs have 
been used in text-independent speaker recognition 
with great success [4]. A popular way of using 
GMMs in speaker recognition is to train a large 
background speaker model, i.e., 1024 Gaussians, 
and adapt this model to each speaker using that 
particular speaker’s data. GMM training is 
performed using the well-known EM algorithm [5]. 
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In this paper, we train a GMM for each person’s 
time-series data from scratch and we have used 
eight (8) mixtures, which resulted in satisfactory 
performance in this application. During the testing 
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We also train a background model, one more 
GMM, with twice the number of mixtures. 
Background GMM is required for normalization in 
likelihood ratio testing for biometric verification. 
The log-likelihood of the observed data under the 
background model, Lg(x) can also be computed in a 
similar way.  
For verification task, the Bayesian decision 
amounts to the comparison of the log-likelihood-
ratio, Li(x) -Lg(x) to a threshold. For different 
thresholds, we trace the receiver operating 
characteristics (ROC) curve which plots false-
accept rate versus false-reject rate. 



 
For identification problem, however, we need to 
obtain posterior probabilities of identities given test 
data and choose the largest one as the identity of 
the test segment. The posterior probabilities can be 
found from: 
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where we assume equal priors for each class. These 
probabilities can also be called scores. We discuss 
how to combine these scores from different 
modalities in the following section. 
 

4. FUSION METHODS 
 

Combining multiple classifiers is a new research 
area that has attracted great interest [6] during the 
past few years. Combination methods can be 
divided into two categories: fixed and trained. 
Fixed methods have simple fixed rules to combine 
information from a set of classifiers. On the other 
hand, trainable combination methods have some 
free parameters that can be trained on a separate 
part of training data (validation or held-out data). 
Trainable combiners are typically classifiers 
themselves. They classify in the score space rather 
than the original feature space. 
 
Given test data x, let S(i,j) represent the score of 
person i in modality j. We drop x from our notation 
for brevity. Our goal is to obtain a single score S(i) 
for person i using a combination method.  We 
identify various classifier combination methods 
below: 
 
Fixed rules: 

1. Max Rule: S(i)=maxj S(i,j) 
2. Min Rule: S(i)=minj S(i,j) 
3. Mean (sum) Rule: S(i)=sumj S(i,j) 
4. Product Rule: S(i)=prodj S(i,j) 
5. Median Rule: S(i)=medianj S(i,j) 

 

Trainable combiners: 
 

1. Nearest mean combiner (NMC): A simple 
linear combiner that chooses nearest class 
mean as the classifier output. 

2. Fisher combiner (Fisher): A linear 
classifier that minimizes least squares error 
in mapping features to class labels in a one-
vs-all fashion. 

3. Linear discriminant combiner (LDC): 
Another linear classifier that models each 
class by a Gaussian that shares the same 
covariance matrix with other classes. 

4. Naïve Bayes combiner (NB): Naïve Bayes 
classifier. Assumes that class-conditional 
probabilities of the feature vector 
coordinates are statistically independent. 
Each coordinate is modeled with a 
nonparametric binning distribution model 
with 10 bins. 

5. Parzen combiner: Parzen density based 
combiner. 

 
 

5. EXPERIMENTS AND RESULTS 
 
We have carried out experiments on decision fusion 
for driver recognition using CIAIR database from 
Nagoya University. We used a 20 person subset of 
the database that we also used in an earlier paper 
[1]. In this study, we extract all driving signals and 
evaluate their performance individually as well as 
after combination. 
 
From each driver, 50 image frames, 50 seconds of 
non-silence audio and around 600 seconds of 
driving signals were utilized. We extracted features 
from this dataset and divided all features into 20 
equal length parts for each driver and modality and 
number the parts from one to 20. When we have 
formed the multimodal test-sets, we have assumed 
that each modality part was associated with the 
parts that have the same number in other 
modalities. Smoothed and sub-sampled driving 
signals and their first derivatives were used as 
features for modeling driving behavior of the 
drivers. Thus, each driving signal has 2 
dimensional feature vectors. 
We have then performed a leave-one-out training 
procedure, where for each single testing part, 



seventeen parts were used for training and two 
parts were held-out for validation to optimize 
normalization parameters and fusion weights. This 
gave us 20 tests for each person (each time the 
training data is different although not independent), 
leading to 400 (20x20) genuine tests in total. 
GMMs were driven with eight, one, and eight 
mixture components for speech, face, and driving 
signals, respectively. Background GMM models 
were trained for each modality as well [6].    
We performed closed set identification with the 
data for this study. We used prtools [7] software 
library for evaluating the results and combining the 
classifiers. In Table 1, we present individual 
performance results for each (possibly feature 
combined) modality. 
 
Modality Percent Error (%) 
Acceleration (A) 42.5 
Brake (B) 31.7 
Engine Speed (E) 84.2 
Vehicle Speed (V) 81 
Steering wheel angle (W) 88.7 
A+B+E+V+W 31.2 
A+B1 10.2 
A+B+W 16.5 
Speech (S) 2 
Face (F) 11 

Table 1 Individual performance results for different 
modalities 

In this table, + sign denotes feature fusion, that is 
A+B means acceleration and brake features are 
concatenated and a bigger feature vector of 
dimension 4 is obtained. The results show that 
individually, each driving signal is not appropriate 
for biometric identification. However, feature 
fusion of acceleration and brake signals (A+B) 
achieves a respectable 10.2% error rate. This was 
also observed in [1]. 
 
In Table 2, we present decision fusion using fixed 
rules for various modalities. In this table the 
comma (,) sign indicates decision fusion, that is, 
classifier posterior probabilities are combined. 
 
 Max Min Media Mean Produc
                                                 
1 The results for A+B, F and S features were found in 
[1]. For A+B driving features, we re-estimated the 
GMMs. Due to random initialization, the results are 
slighty different than the ones reported in [1].  

n t 
A,B 28.2 14.5 14 14 11.2 
A,B,E,V,
W 

43 31 41.5 22.7 23.5 

A,B,W 38 22.5 30.7 18.7 16.2 
A,B,F,S 9 3.2 0 0 1 

Table 2 Error rates (%) when using fixed 
combination rules for combining different modalities 

 The fixed combination rules are usually 
suboptimal since they do not consider relative 
reliability of individual modalities. We observe that 
among the fixed combiners, product and mean rules 
perform the best in general. Since acceleration and 
brake are more reliable amongst driving signals, it 
is possible to achieve better results by just using 
them instead of using all driving signals. When we 
include face and speech modalities, we can easily 
achieve close to 0% error even with these 
suboptimal fixed combining rules. 
 
In Table 3, trainable combiner results are presented. 
The trainable combiners are trained using 
validation data that was set aside from training and 
testing data in the cross-validation procedure 
described above. 
 
 NMC Fisher LDC NB Parzen 
A,B 12.7 11.7 10.7 6.5 0.2 
A,B,E,V,
W 

10.5 5.2 3 5 0 

A,B,W 10 8.2 7 6.7 2 
A,B,F,S 0 0 0.2 0 0 

Table 3 Error rates (%) when using trainable 
combination methods 

In trainable combiners, we achieve lower error rates 
in most cases due to validation data training. In this 
study, it appears that the validation and test data are 
very similar and overtraining combiners such as 
Parzen density based combiner work is  clearly the 
best. It is well known that, Parzen classifier overfits 
to training data and does not easily generalize. 
However in this case, it seems that it is the most 
promising choice in comparison with other 
methods tried. Linear combiners such as LDC and 
Fisher also achieve respectable performance 
especially when the number of input classifiers are 
large. 
 
 
 



6. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have studied the performance of 
various combination methods for driver 
identification using driving behavior signals 
collected in a real-world scenario. The results show 
that individual driving signals are not largely 
indicative of the person by themselves. However, 
when we combine decisions from GMM classifiers 
of each driving signal using trainable combiners, 
we can achieve very low error rates in identifying 
the driver of the vehicle. 
 
In the future, we plan to test these models in a 
larger subset of the CIAIR database. 
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