ON THE COMPLEXITY-PERFORMANCE TRADEOFF OF TWO ACTIVE NOISE CONTROL SYSTEMS FOR VEHICLES

Pedro Ramos, Luis Vicente, Roberto Torrubia, Ana López, Ana Salinas and Enrique Masgrau.

ABSTRACT

The aim of this paper is to show the experimental results achieved in the attenuation of periodic disturbances inside a vehicle with two Active Noise Control algorithms implemented on the TMS320C6701 DSP and to compare the computational complexity of both strategies:

(1) Modified FxGAL: Modified filtered-x gradient adaptive lattice algorithm. This technique is based on the signal orthogonalization carried out by an adaptive lattice predictor in a previous stage.

(2) G μ -FxSLMS: Filtered-x sequential least mean square algorithm with step-size gain. This strategy is based on partial updates of the weights of an adaptive filter as well as on the controlled increase in step-size of the algorithm.

This work illustrates by means of two different algorithms the tradeoff established among computational costs, convergence rate, stability and mean-square error excess when DSP-based strategies are used in control systems focused on the attenuation of acoustic disturbances.