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ABSTRACT

We apply a general deep learning framework to address the
non-factoid question answering task. Our approach does not
rely on any linguistic tools and can be applied to different lan-
guages or domains. Various architectures are presented and
compared. We create and release a QA corpus and setup a
new QA task in the insurance domain. Experimental results
demonstrate superior performance compared to the baseline
methods and various technologies give further improvements.
For this highly challenging task, the top-1 accuracy can reach
up to 65.3% on a test set, which indicates a great potential for
practical use.

Index Terms— Answer Selection, Question Answering,
Convolutional Neural Network (CNN), Deep Learning, Spo-
ken Question Answering System

1. INTRODUCTION

Natural language understanding based spoken dialog system
has been a popular topic in the past years of artificial intelli-
gence renaissance. Many of those influential systems include
a question answering module, e.g. Apple’s Siri, IBM’s Wat-
son and Amazon’s Echo. In this paper, we address the Ques-
tion Answering (QA) module in those spoken QA systems.
We treat the QA from a text matching and selection perspec-
tive. IBM’s Watson system [1] is a classical example of the
traditional way of doing Question Answering (QA). In this
work we utilize a deep learning framework to accomplish the
answer selection which is a key step in the QA task. Hence
QA is studied from an answer matching and selection per-
spective. Given a question q and an answer candidate pool
{a1, a2, ..., as} for that question (s is the pool size), the goal
is to find the best answer candidate ak, 1 ≤ k ≤ s . If the se-
lected answer ak is inside the ground truth set (one question
could have more than one correct answer) of question q , the
question q is considered to be answered correctly, otherwise it
is answered incorrectly. From the definition, the QA problem
can be regarded as a binary classification problem. For each
question, for each answer candidate, it may be appropriate or
not. In order to find the best pair, we need a metric to measure

the matching degree of each QA pair so that the QA pair with
highest metric value will be chosen.

The above definition is general. The only assumption
made is that for every question there is an answer candidate
pool. In practice, the pool can be easily built by using a gen-
eral search engine like Google Search or an information re-
trieval software library like Apache Lucene.

We created a data set by collecting question and answer
pairs from the internet. All these question and answer pairs
are in the insurance domain. The construction of this insur-
ance domain QA corpus was driven by the intense scientific
and commercial interest in this domain. We released this cor-
pus 1 to create an open QA task, enabling other researchers
to utilize it and supporting a fair comparison among different
methods. The corpus consists of four parts: train, develop-
ment, test1 and test2. Table 1 gives the data statistics. All
experiments conducted in this paper are based on this corpus.
To our best knowledge, it is the first time an insurance domain
QA task has been released.

Our QA task requires specifying an answer candidate pool
for each question in the development, test1 and test2 parts
of the corpus. The released corpus contains totally 24 981
unique answers. It is possible to use the whole answer space
as the candidate pool, so that each question must be compared
with 24 981 answer candidates. However, this is impractical
due to time consuming computations. In this paper, we set
the pool size to be 500, so that it is both practical and still a
challenging task. We put the ground truth answers into the
pool and randomly sample negative answers from the answer
space until the pool size reaches 500.

The technology described in this paper with the released
data set and benchmark task is targeting potential applications
like online customer service. Hence it is not supposed to han-
dle question answering tasks that require reasoning, e.g. is
tomorrow Tuesday? (answer depends on if today is Monday.)
The rest of the paper is organized as follows: Sec. 2 describes
the different architectures used this work; Sec. 3 provides the
experimental setup details; experimental results and discus-
sions are presented in Sec. 4; Sec. 5 contains related work

1git clone https://github.com/shuzi/insuranceQA.git
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Questions Answers Question Word Count

Train 12 887 18 540 92 095
Dev 1 000 1 454 7 158
Test1 1 800 2 616 12 893
Test2 1 800 2 593 12 905

Table 1: Corpus statistics: first two columns are the question and
answer quantity; notice there could be multiple answers for some
questions so that the answer quantity is larger than the question quan-
tity; third column is the question total word count. The total number
of answers is 24 981 and the whole answer text contains 2 386 749
words

and finally we draw conclusions in Sec. 6.

2. MODEL DESCRIPTION

In this section we describe the proposed deep learning frame-
work and many variations based on that framework. However,
the main idea of those different systems is the same: learn a
distributed vector representation of a given question and its
answer candidates and then use a similarity metric to mea-
sure the matching degree. We first developed two baseline
systems for comparison.

2.1. Baseline Systems

The first baseline system is a bag-of-words model. Step one is
to train a word embedding by [2]. This word embedding pro-
vides the word vector for each token in the question and its
candidate answer. From these, the baseline system produces
the idf-weighted sum of word vectors for the question and for
all of its answer candidates. This produces a vector represen-
tation for the question and each answer candidate. The last
step is to calculate the cosine similarity between each ques-
tion/candidate pair. The pair with highest cosine similarity is
returned as the answer. The second baseline is an information
retrieval (IR) baseline. The state-of-the-art weighted depen-
dency model (WD) [3, 4] is used. The WD model employs
a weighted combination of term-based and term proximity-
based ranking features to score each candidate answer. Ex-
ample features include counts of question bigrams in ordered
and unordered windows of different sizes in each candidate
answer, in addition to simple unigram counts. The basic idea
is that important bigrams or unigrams in the question should
receive higher weights when their frequencies are computed.
Thus, the feature weights are assigned in accordance to the
importance of the question unigrams or bigrams that they are
defined over, where the importance factor is learned as part of
the model training process. Row 1 and 2 (first column Idx) of
Table 2 are the baseline system results.

2.2. CNNs-based System

In this paper, a QA framework based on Convolutional Neural
Networks (CNN) is presented. As summarized in Chapter 11
of [5], a CNN leverages three important ideas that can help
improve a machine learning system: sparse interaction, pa-
rameter sharing and equivariant representation. Sparse
interaction contrasts with traditional neural networks where
each output is interactive with each input. In a CNN, the fil-
ter size (or kernel size) is usually much smaller than the input
size. As a result , the output is only interactive with a narrow
window of the input. Parameter sharing refers to reusing the
filter parameters in the convolution operations, while the el-
ement in the weight matrix of traditional neural network will
be used only once to calculate the output. Equivariant rep-
resentation is related to the idea of k-MaxPooling which is
usually combined with a CNN. In this paper we always set
k = 1. So each filter of the CNN represents some feature,
and after the convolution operation, the 1-MaxPooling value
represents the highest degree that the input contains the fea-
ture. The position of that feature in the input is irrelevant due
to the convolution. This property is very useful for many NLP
applications. Below is an example to demonstrate our CNN
implementation. w11 w21 w31 w41

w12 w22 w32 w42

w13 w23 w33 w43

⊙ f11 f21
f12 f22
f13 f23

 (1)

The left matrix W is the input sentence. Each word is rep-
resented by a 3-dimensional word embedding vector and the
input length is 4. The right matrix F represents the filter. The
2-gram filter size is 3 × 2 . The convolution output of the
input W and the filter F is a 3-dim vector O , assuming zero
padding has been done so that only a narrow convolution is
conducted.

o1 = w11f11 + w12f12 + w13f13 + w21f21 + w22f22 + w23f23

o2 = w21f11 + w22f12 + w23f13 + w31f21 + w32f22 + w33f23

o3 = w31f11 + w32f12 + w33f13 + w41f21 + w42f22 + w43f23
(2)

After 1-MaxPooling, the maximum of the 3 values will be
kept for the filter F which indicates the highest degree that
filter F matches the input W .

2.3. Training and Loss Function

Different architectures will be described later. However all
those different architectures share the same training and test-
ing mechanism. In this paper we minimize a ranking loss
similar to [6] [7]. During training, for each training ques-
tion Q there is a positive answer A+(the ground truth). A
training instance is constructed by pairing this A+ with a neg-
ative answer A−(a wrong answer) sampled from the whole
answer space. The deep learning framework generates vec-
tor representations for the question and the two candidates:
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Fig. 1: Architecture I . Q for question; A for answer; P is 1-
MaxPooling; T is tanh layer; HL for hidden layer and HL already
includes tanh as its activation function.
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Fig. 2: Architecture II . QA means the weights of corresponding
layer are shared by Q and A .

VQ , VA+ and VA− . The cosine similarities cos(VQ, VA+)

and cos(VQ, VA−) are calculated and the distance between the
two similarities is compared to a margin: cos(VQ, VA+) −
cos(VQ, VA−) < m . m is the margin. When this condition is
satisfied, the implication is that the vector space embedding
either ranks the positive answer below the negative answer, or
does not sufficiently rank the positive answer above the neg-
ative answer. If cos(VQ, VA+) − cos(VQ, VA−) >= m there is
no update to the parameters and a new negative example is
sampled until the margin is less than m (to reduce running
time we set maximum 50 times in this paper). The hinge loss
function is hence defined as follows:

L = max {0,m− cos(VQ, VA+) + cos(VQ, VA−)} (3)

For testing, we calculate the cos(VQ, Vcandidate) between the
question Q and each answer candidate Vcandidate in the pool
(size 500). The candidate answer with largest cosine similar-
ity is selected.

2.4. Architectures

In this subsection we demonstrate several proposed architec-
tures for this QA task. Figure 1 shows the Architecture I .
Q is the input question provided as input to the first hid-
den layer HLQ. The hidden layer (HL) is defined as z =
tanh(Wx+B). W is the weight matrix; B is the bias vector;
x is input; z is the output of the activation function tanh. The
output then flows to the CNN layer CNNQ, applied to extract
question side features. P is the MaxPooling layer (we always
use 1-MaxPooling in this paper) and T is the tanh layer. Sim-
ilar to the question side, the answer A is processed by HLA

and then features are extracted by CNNA . 1-MaxPooling P
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Fig. 3: Architecture III . HL for hidden layer. Add another HLQ and
HLA after CNNQA .
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Fig. 4: Architecture IV . Add another shared hidden layer HLQA
after CNNQA .

and tanh layer T will function in the last step. The result is a
vector representation for both question and answer. The final
output is the cosine similarity between these vectors. Row 3
of Table 2 is the Architecture I result.

Figure 2 is the Architecture II . The main difference com-
pared to Architecture I is that both question and answer sides
share the same HL and CNN weights. Row 4 of Table 2 is the
Architecture II result.

We also consider architectures with a hidden layer after
the CNN. Figure 3 is the Architecture III in which another
HLQ is added at the question side after the CNN and another
HLA is added at the answer side after the CNN. Row 5 of
Table 2 is the Architecture III result. Architecture IV, shown
in Figure 4, is similar except the second HL of both question
and answer share the same HLQA weights. The rows 6 and 7
of Table 2 are the Architecture IV results.

Figure 5 is the Architecture V where two layers of
CNNQA are deployed. In section 2.2 we show the convo-
lution output is a vector (3-dim in that example). This is
true only for CNNs with a single filter. By applying multiple
filters the result is a matrix. If there are 4 filters utilized for
the example in section 2.2, the output is the following matrix.

o11 o21 o31
o12 o22 o32
o13 o23 o33
o14 o24 o34

 (4)

Each row represents the output of one filter and each column
represents a bigram of the input. This matrix is the input to
the next CNNQA layer. For this second layer, every bigram is
effectively one “word” and the previous filter’s output for that
bigram is its word embedding. Row 11 of Table 2 is the result
for Architecture V . Architecture VI in Figure 6 is similar
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Idx Dev Test1 Test2 Description

1 31.9 32.1 32.2 Baseline: Bag-of-words
2 52.7 55.1 50.8 Baseline: metzler-bendersky IR model
3 44.2 41.7 39.5 Architecture I: HLQ(200) HLA(200) CNNQ(1000) CNNA(1000) 1-MaxPooling Tanh
4 58.2 57.8 53.6 Architecture II: HLQA(200) CNNQA(1000)1-MaxPooling Tanh
5 36.1 33.6 32.7 Architecture III: HLQA(200) CNNQA(1000) HLQ(1000) HLA(1000) 1-MaxPooling Tanh
6 51.4 50.5 46.1 Architecture IV: HLQA(200) CNNQA(1000) HLQA(1000) 1-MaxPooling Tanh
7 47.0 46.7 43.0 Architecture IV: HLQA(200) CNNQA(1000) HLQA(500) 1-MaxPooling Tanh
8 60.6 59.2 55.1 Architecture II: HLQA(200) CNNQA(2000) 1-MaxPooling Tanh
9 61.5 61.3 57.8 Architecture II: HLQA(200) CNNQA(3000) 1-MaxPooling Tanh
10 61.8 62.8 59.2 Architecture II: HLQA(200) CNNQA(4000) 1-MaxPooling Tanh (best result in this table)
11 59.7 59.3 55.6 Architecture V: HLQA(200) CNNQA(1000) CNNQA(1000) 1-MaxPooling Tanh
12 59.9 60.6 55.9 Architecture VI: HLQA(200) CNNQA(1000) CNNQA(1000) 1-MaxPooling Tanh (2COST)
13 59.9 58.7 53.8 Architecture II: HLQA(200) Augmented-CNNQA(1000) 1-MaxPooling Tanh
14 60.0 60.3 54.3 Architecture II: HLQA(200) Augmented-CNNQA(2000) 1-MaxPooling Tanh
15 61.7 62.2 56.3 Architecture II: HLQA(200) Augmented-CNNQA(3000) 1-MaxPooling Tanh

Table 2: Experimental Results. HL(200) means the hidden layer size is 200; CNN(1000) means there are 1000 filters used; top one precision
of Dev, Test1 and Test2 have been reported.

to Architecture V except we utilize layer-wise supervision.
After each CNNQA layer there is 1-MaxPooling and a tanh
layer so that the cost function can be calculated and back-
propagation can be conducted. The result of Architecture VI
is in row 12 of Table 2.

We have tried another three techniques to improve Archi-
tecture II in Figure 2 . First, the CNN filter quantity has been
increased, see row 8 9 and 10 of Table 2. Second, the convo-
lution operation has been augmented to include skip-bigrams.
Consider the example in section 2.2, for the input and one
filter in Eq. 1, the augmented convolution operation will not
only produce Eq. 2 but also the following discontinuous con-
volution:

o4 = w11f11 + w12f12 + w13f13 + w31f21 + w32f22 + w33f23

o5 = w21f11 + w22f12 + w23f13 + w41f21 + w42f22 + w43f23
(5)

The 1-MaxPooling will still be applied to get the largest value
among [o1, o2, o3, o4, o5] so that this filter is automatically
adapted to match a bigram or skip-bigram feature. Rows 13
14 and 15 of Table 2 show the results. Third, we investi-
gate the similarity metric. Until now, we have been using
the cosine similarity which is widely adopted for vector space
models. However, is cosine similarity the best option for this
task? Table 3 is the results for similarity metric study. Some
metrics include hyperparameters and experiments with vari-
ous hyperparameters have been conducted. We propose two
novel metrics (GESD and AESD) which demonstrate superior
performance.

3. EXPERIMENTAL SETUP

The deep learning framework in this paper has been built from
scratch using Java. To improve speed, we adopt the HOG-
WILD approach [8] . Each thread processes one training in-
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Fig. 5: Architecture V . Two shared CNNQA .
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P
+
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Fig. 6: Architecture VI . Two shared CNNQA . Two cost functions.

stance at one time and updates the weights of the neural net-
works. There is no locking in any thread. The word embed-
ding (100 dimensions) is trained by word2vec [2] and used
for initialization. Word embeddings are also parameters and
are optimized for the QA task. Stochastic Gradient Descent
is the optimization strategy and the L2-norm is also added in
the loss function. In this paper, the weight of the L2-norm
is 0.0001, the learning rate is 0.01 and margin m is 0.009 .
Those hyperparameters are chosen based on previous experi-
ences in using deep learning on this data and they are not very
sensitive within reasonable range. The utilized computing re-
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Dev Test1 Test2 Description

58.2 57.8 53.6 cosine: k(x, y) = xyᵀ

‖x‖‖y‖
58.5 57.1 53.3 polynomial: k(x, y) = (γxyᵀ + c)d, γ = 0.5, d = 2, c = 1

56.8 54.6 52.6 polynomial: k(x, y) = (γxyᵀ + c)d, γ = 1.0, d = 2, c = 1

55.0 53.6 48.2 polynomial: k(x, y) = (γxyᵀ + c)d, γ = 1.5, d = 2, c = 1

57.1 53.7 51.5 polynomial: k(x, y) = (γxyᵀ + c)d, γ = 0.5, d = 3, c = 1

55.3 52.4 48.7 polynomial: k(x, y) = (γxyᵀ + c)d, γ = 1.0, d = 3, c = 1

52.5 51.0 47.2 polynomial: k(x, y) = (γxyᵀ + c)d, γ = 1.5, d = 3, c = 1
61.3 59.9 57.0 sigmoid: k(x, y) = tanh(γxyᵀ + c), γ = 0.5, c = 1
61.6 60.2 57.1 sigmoid: k(x, y) = tanh(γxyᵀ + c), γ = 1.0, c = 1
60.2 60.2 55.7 sigmoid: k(x, y) = tanh(γxyᵀ + c), γ = 1.5, c = 1
60.0 60.3 54.7 RBF: k(x, y) = exp(−γ‖x− y‖2), γ = 0.5
60.2 57.0 54.4 RBF: k(x, y) = exp(−γ‖x− y‖2), γ = 1.0
58.4 57.3 53.8 RBF: k(x, y) = exp(−γ‖x− y‖2), γ = 1.5
60.8 60.3 57.0 euclidean: k(x, y) = 1

1+‖x−y‖
42.2 42.5 38.2 exponential: k(x, y) = exp(−γ‖x− y‖1), γ = 0.5
41.4 39.5 36.0 exponential: k(x, y) = exp(−γ‖x− y‖1), γ = 1.0
48.2 45.1 41.6 exponential: k(x, y) = exp(−γ‖x− y‖1), γ = 1.5
51.0 49.5 46.4 manhattan: k(x, y) = 1

1+‖x−y‖1
62.5 61.4 59.0 GESD: k(x, y) = 1

1+‖x−y‖ ·
1

1+exp(−γ(xyᵀ+c))
, γ = 0.5, c = 1

62.9 62.1 59.3 GESD: k(x, y) = 1
1+‖x−y‖ ·

1
1+exp(−γ(xyᵀ+c))

, γ = 1.0, c = 1

62.6 62.1 59.2 GESD: k(x, y) = 1
1+‖x−y‖ ·

1
1+exp(−γ(xyᵀ+c))

, γ = 1.5, c = 1

63.1 61.9 58.2 AESD: k(x, y) = 0.5
1+‖x−y‖+

0.5
1+exp(−γ(xyᵀ+c))

, γ = 0.5, c = 1

63.4 61.7 58.7 AESD: k(x, y) = 0.5
1+‖x−y‖ +

0.5
1+exp(−γ(xyᵀ+c))

, γ = 1.0, c = 1

62.8 62.0 57.7 AESD: k(x, y) = 0.5
1+‖x−y‖ +

0.5
1+exp(−γ(xyᵀ+c))

, γ = 1.5, c = 1

63.5 62.5 60.2 GESD: k(x, y) = 1
1+‖x−y‖ ·

1
1+exp(−γ(xyᵀ+c))

, γ = 1.0, 2000 filters
64.3 65.1 61.0 GESD: k(x, y) = 1

1+‖x−y‖ ·
1

1+exp(−γ(xyᵀ+c))
, γ = 1.0, 3000 filters

65.4 65.3 61.0 GESD: k(x, y) = 1
1+‖x−y‖ ·

1
1+exp(−γ(xyᵀ+c))

, γ = 1.0, 4000 filters
64.5 62.7 60.1 AESD: k(x, y) = 0.5

1+‖x−y‖ +
0.5

1+exp(−γ(xyᵀ+c))
, γ = 1.0, 2000 filters

64.3 63.3 62.2 AESD: k(x, y) = 0.5
1+‖x−y‖ +

0.5
1+exp(−γ(xyᵀ+c))

, γ = 1.0, 3000 filters
63.9 64.5 61.1 AESD: k(x, y) = 0.5

1+‖x−y‖ +
0.5

1+exp(−γ(xyᵀ+c))
, γ = 1.0, 4000 filters

Table 3: Experimental results of various similarities. All results in above part are based on Architecture II with 1000 filters (corresponding
to Row 4 in Table 2). In the bottom part, the results are based on Architecture II using the proposed metric with more filters. k(x, y) is the
similarity between vector x and y. ‖x‖ is the L2 norm and ‖x‖1 is the L1 norm. xyᵀ represents the inner product of x and y. We always
normalize the question and answer vectors before calculating the similarity. Highest number in each column is in bold font.

sources for this work are enormous. We heavily occupy a
Power 7 cluster which consists of 75 machines. Each machine
has 32 physical cores and each core supports 2-4 hyperthread-
ing. The HOGWILD approach will bring some randomness
due to no locking. Even with locking, the thread scheduler
would alter the order of examples between runs so that ran-
domness would still exist. Therefore, for each row in Table 2
(except for row 1 2) and Table 3, 10 experiments have been
conducted on the dev set and the run with best dev score is
chosen to calculate the test scores.

4. RESULTS AND DISCUSSIONS

In this section, detailed analysis on experimental results are
given. From Table 2 and 3 the following conclusions can be
made: (1) baseline 1 only utilizes word embeddings and base-

line 2 is based on traditional term based features. Our pro-
posed method can reach significantly better accuracy which
demonstrates the superiority of deep learning approach; (2)
using separate hidden layer (HL) or CNN layers for Q and
A has worse performance compared to a shared HL or CNN
layer (Table 2, row 3 vs. 4, row 5 vs. 6). This is reason-
able because for a shared layer network, the corresponding
elements in Q and A vector are guaranteed to represent the
same CNN filter convolution result while for network with
separate Q and A layers, there is no such constraint and the
optimizer has to learn over a set of double sized parameters.
Hence the optimizer faces greater difficulty; (3) adding a HL
after the CNN degrades the performance (Table 2, row 4 vs.
6 and 7). This proves that CNN already captures useful fea-
tures for QA matching and unnecessary mapping the features
to another space makes no sense at all; (4) increasing the CNN
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filter quantity can capture more features which gives notable
improvement (Table 2, row 4 vs. 8, 9 and 10); (5) two layers
of CNN can represent a higher level of abstraction with wider
range in the input. Hence going deeper by using two CNN
layers improves the accuracy (Table 2, row 4 vs. 11); (6)
effective learning in deep networks is often a difficult task.
Layer-wise supervision can alleviate the problem (Table 2,
row 11 vs. 12); (7) combining bigram and skip-bigram fea-
tures brings gain on Test1 but not on Test2 (Table 2, row 4 vs.
13, row 8 vs. 14, row 9 vs. 15); (8) Table 3 shows that with
the same model capacity, similarity metric plays an impor-
tant role and the widely used cosine similarity is not the best
choice for this task. The similarity in Table 3 can be catego-
rized into three classes: L1-norm based metric which is the
semantic distance of Q and A summed from each coordinate
axis; L2-norm based metric which is the straight-line seman-
tic distance of Q and A; inner product based metric which
measures the angle between Q and A. We propose two new
metrics that combine L2-norm and inner product by multipli-
cation (GESD Geometric mean of Euclidean and Sigmoid Dot
product) and addition (AESD Arithmetic mean of Euclidean
and Sigmoid Dot product). The proposed two metrics are the
best among all compared metrics. Finally, in the bottom of
Table 3 it is clear that with more filters, the proposed metric
can achieve even better performance.

5. RELATED WORK

Deep learning technology has been widely used in machine
learning tasks, often demonstrating superior performance
compared to traditional methods. Many of those applications
focus on classification related tasks, e.g. on image recogni-
tion [9], on speech [10] [11] [12] and on machine translation
[13] [14]. This paper is based on many prior works on uti-
lizing deep learning for NLP tasks: Gao et al. [15] proposed
a CNN based network which maps source-target document
pairs to embedding vectors such that the distance between
source documents and their corresponding interesting targets
is minimized. Lu and Li [16] propose a CNN based deep
network for a short text matching task; Hu et al. [7] also use
several CNN based networks for sentence matching; Kalch-
brenner et al. [17] use a CNN for sentiment prediction and
question classification; Kim [18] uses a CNN in sentiment
analysis; Zeng et al. [19] use a CNN for relation classifi-
cation; Socher et al. [20] [21] use a recursive network for
paraphrase detection and parsing; Iyyer et al. [22] propose
a recursive network for factoid question answering; Weston
et al. [6] use a CNN for hashtag prediction; Yu et al. [23]
use a CNN for answer selection; Yin and Schütze [24] use a
bi-CNN for paraphrase identification. Our work follows the
spirit of many previous work in the sense that we utilize CNN
to map natural language sentences into embedding vectors
so that the similarity can be calculated. However this paper
has conducted extensive experiments over various architec-

tures which are not included in previous work. Furthermore,
we explored different similarity metrics, skip-bigram based
convolution and layerwise supervision which have not been
presented in previous work.

6. CONCLUSIONS

In this paper, the spoken question answering system is stud-
ied from an answer selection perspective by employing a deep
learning framework. The proposed framework does not rely
on any linguistic tool and can be easily adapted to different
languages or domains. Our work serves as solid evidence that
deep learning based QA is an encouraging research direction.
The scientific contributions can be summarized as follows:
(1) creating a new QA task in the insurance domain and re-
leasing a new corpus so that different methods can be fairly
compared; (2) proposing a general deep learning framework
with several variants for the QA task and comparison exper-
iments have been conducted; (3) utilizing novel techniques
that bring improvements: multi-layer CNN with layer-wise
supervision, augmented CNN with discontinuous convolution
and novel similarity metric that combine both L2-norm and
inner product information; (4) the best scores in this paper
are very promising: for this challenging task (select one an-
swer from a pool with size 500), the top one accuracy of test
corpus can reach up to 65.3%; (5) for researchers who want to
proceed with this task, this paper provides valuable guidance:
a shared layer structure should be adopted; no need to append
a hidden layer after the CNN; two levels of CNN with layer-
wise training improves accuracy; discontinuous convolution
sometimes can help; the similarity metric plays a crucial role
and the proposed metric is preferred and finally increasing the
filter quantity brings improvement.
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