
OPTIMIZING HUMAN-INTERPRETABLE DIALOG MANAGEMENT POLICY USING
GENETIC ALGORITHM

Hang Ren, Weiqun Xu and Yonghong Yan

The Key Laboratory of Speech Acoustics and Content Understanding
Institute of Acoustics, Chinese Academy of Sciences

21 North 4th Ring West Road, Beijing, China, 100190

ABSTRACT

Automatic optimization of spoken dialog management poli-
cies that are robust to environmental noise has long been the
goal for both academia and industry. Approaches based on re-
inforcement learning have been proved to be effective. How-
ever, the numerical representation of dialog policy is human-
incomprehensible and difficult for dialog system designers to
verify or modify, which limits its practical application. In
this paper we propose a novel framework for optimizing dia-
log policies specified in domain language using genetic al-
gorithm. The human-interpretable representation of policy
makes the method suitable for practical employment. We
present learning algorithms using user simulation and real
human-machine dialogs respectively. Empirical experimen-
tal results are given to show the effectiveness of the proposed
approach.

Index Terms— dialog management, reinforcement learn-
ing, genetic algorithm

1. INTRODUCTION

Dialog manager (DM) plays a central part in spoken dialog
system (SDS) and its major functionalities include tracking
dialog states and maintaining a dialog policy which decides
how the system reacts given certain dialog state. Designing
a dialog policy by hand is tedious and erroneous because of
the uncertainty of underlying dialog states especially in noisy
environment. In recent years various approaches for auto-
matic DM policy optimization have been proposed [1, 2, 3, 4],
among which methods based on reinforcement learning (RL)
and POMDP model are the most popular [5]. The main ob-
jective of RL is to learn an optimum policy conducted by an
agent by maximizing its cumulative reward. One of the ad-
vantages of RL-based DMs is its robustness to noises from au-
tomatic speech recognizer (ASR) and spoken language under-
standing (SLU) modules. Also, it automates the optimization
process by allowing the agent to discover the optimum pol-
icy through exploring the underlying state-action space and
incrementally improve the controlling policy.

Despite all the advantages, RL-based DMs are not widely
deployed for commercial SDSs due to several reasons [6].
Firstly, RL algorithms are mostly data-demanding, which
leaves dialog system designers in a dilemma since there is
usually few or even no data available at the early stage of
system development. Several methods have been proposed
to mitigate this problem. A user simulator is often firstly
built using wizard-of-oz dialog data, and then the simula-
tor is used to train a RL-based DM. In recent studies it has
been shown that by incorporating domain knowledge into the
design of kernel functions, the GPSARSA [7, 8] algorithm
exhibits much faster learning speed than conventional online
RL methods. Secondly, RL algorithms usually use complex
numerical models in optimizing the value function, which
are usually beyond human comprehension. The learned pol-
icy is implicitly represented in the optimized value function
(Q-function), which is difficult or even impossible for system
designer to verify or modify, keeping back domain experts
from setting necessary constraints over the system behavior.

In this paper we propose to use Genetic Algorithm (GA)
[9] in optimizing DM policies (GA-DM) which are compre-
hensible to human designers and easy to verify and modify.
The underlying idea is intuitive. We use human-readable do-
main language to sketch the basic structure of the DM policy,
and leave the uncertain parameters for later tuning. Accord-
ing to our experiences in deploying SDSs, it is relatively easy
to specify a basic DM policy, when engineering slot-filling or
task-driven SDSs of a moderate scale. The most difficult part
lies in setting various threshold parameters in dealing with
ASR and SLU errors via repeatedly confirming and ground-
ing. These parameters are usually set heuristically or by trail-
and-error. Automatic optimization of these parameters will be
of great help. We hope to keep the trade-off between purely
hand-designed rule-based policies and the ones automatically
learned using black-box and data-driven RL methods while
keeping the merits from both approaches. Two variants of
the approach are proposed and evaluated, an on-line training
method through interaction with a simulated user and an off-
line and sample-efficient version called on-corpus Q-points
regression.

791978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015

0.5 0.4 0.9 0.3 0.6 0.4 0.3 0.5

0.1 0.5 1.0 0.2 0.1 0.7 0.5 0.6

0.1 0.4 1.0 0.3 0.6 0.7 0.5 0.6

crossover

mutation

0.1 0.4 0.95 0.3 0.6 0.65 0.5 0.6
0.7

Fig. 1: Crossover and mutation of individuals (chromo-
somes). Each individual is a real vector with consitituent
scalars in [0, 1].

Listing 1 BNF grammar of dialog policy template
〈template〉 ::= ‘if’ 〈cond-exp〉 ‘then’ 〈action〉 ‘else’

〈template〉
| ‘if’ 〈cond-exp〉 ‘then’ 〈action〉 ‘else’ 〈action〉

〈cond-exp〉 ::= 〈cond-exp〉 〈logic-op〉 〈cond-exp〉
| 〈boolean-state-var〉
| 〈num-state-var〉 〈comparator〉 〈free-param〉

〈comparator〉 ::= ‘<’ | ‘>’ | ‘==’

〈logic-op〉 ::= ‘and’ | ‘or’

In the following sections we describe the algorithms and
experiments in detail. In section 2.1 we briefly describe Ge-
netic Algorithm and its application in DM policy optimiza-
tion. We propose two different policy optimization methods
based on simulation and dialog corpus in sections 2.2 and 2.3
respectively. In section 3 we give experimental results on sim-
ulated user and real human-machine dialog corpus.

2. MODELS AND ALGORITHMS

2.1. Genetic algorithm and dialog policy template

Genetic algorithm is a general optimization framework. It
simulates the evolution process of natural selection by keep-
ing a population of candidate solutions (individuals) and in-
crementally improve the quality using various genetic oper-
ators. It is a global optimization method which can solve
both numerical and combinatorial problems. The key con-
stituent of GA is a fitness function evaluating the utility of
each individual. GA has been proved to be effective in solv-
ing various problems, including optimizing controllers in AI
games. The psudocode of optimizing DM using GA is given
in Algorithm 1. We refer readers to [9] for a detailed descrip-
tion of GA. The concepts of genotype and phenotype are not
discriminated here. In GA an individual directly carries all
the information comprising a solution, which is a fixed-length

Algorithm 1 Genetic Algorithm using elitism

1: Input fitness function F , Nmut, Nco, Npop, Tmax,K,
P0 ← ∅

2: for i← 1, . . . , Npop do
3: P0.add(Random.individual()) . random initialization
4: while fitness ft not converges and t < Tmax do
5: t← t+ 1, Pt ← ∅ . next generation
6: Pt.add(Pt−1.getFittest()) . elitism
7: for i← 1, . . . , Nmut do
8: Pt.add(mutate(Pt−1.getFittest()))
9: for i← 1, . . . , Nco do

10: I1, I2 ← tournamentSelect(Pt−1,K)
11: Pt.add(mutate(crossover(I1, I2)))
12: ft = Pt.getFittest().getFitness()
13: return Pt.getFittest()

14: function MUTATE(I , σ, µmut)
15: for each parameter θi of I do
16: if Random.uniform() < µmut then
17: I.θi ← perturb(I.θi)
18: return I

19: function PERTURB(θ, σ)
20: g ← abs(Random.stdGaussian())
21: if Random.uniform() < θ then
22: v ← − g

σ ∗ θ + θ
23: else
24: v ← g

σ ∗ (1.0− θ) + θ

25: if v < 0.0 or v > 1.0 then
26: return perturb(θ, σ)
27: else
28: return v

29: function TOURNAMENTSELECT(P , K)
30: choose a random subset PK of size K from P
31: return PK .getFittest()

32: function CROSSOVER(I1, I2)
33: I ′ ← exchange random parts of I1 and I2
34: return I ′1

floating-point array in our experiment and each number is in
[0, 1] as a free parameter of the dialog policy template. An in-
dividual can instantiate a concrete DM policy, with a defined
policy template. The policy template is composed of a set of
prioritized condition-action expressions and used to specify
the basic structure of a dialog policy. Given certain dialog
state, each condition expression is checked sequentially and
the first matched one is selected with the associated action
chosen as output. Listing 1 gives the BNF grammar of the
proposed templates. The actions of the template is fixed and
free parameters can be used to set thresholds for numerical
state variables. Apart from the conditional expression, pa-
rameters can also be used to induce new state variables, for

792

example a variable representing the number of slots whose
top scores are above certain threshold. Although the general
system action is fixed in the template, the ‘structure’ of the ac-
tion (in this slot-filling setting, structure includes sub-dialog-
actions and the associated slots and values) can be controlled
by parameters. For example, in the action ‘offer’, threshold
can be used to filter the hypotheses that are used in searching
for the queried information.

Note that the template in Listing 1 has been proposed for
its conciseness and simplicity and does not have to be fixed.
The design of the dialog template requires knowledge in the
dialog domain but does not need a exact model of the envi-
ronmental noise, thus is very suitable for human experts. This
engineering division is intentionally made in our proposed ap-
proach.

In GA two kinds of genetic operators are used, i.e. mu-
tation and crossover, which are shown graphically in Figure
1 and as pseudo-code in Algorithm 1. During crossover, two
parents are selected, then random parts of the two parents are
exchanged, giving birth to a new child. The mutation oper-
ator checks each component of a chromosome sequentially,
either leaving it intact or perturbing it randomly. In our im-
plementation the perturbation is realized by sampling from a
skewed normal distribution with the peak centered at the per-
turbed number. If the sampling result lies outside [0, 1], the
process is repeated by calling the function perturb recursively.
This sampling sub-routine is designed for a smooth distribu-
tion function. The mutation and crossover operators represent
asexual and bisexual reproductions in GA respectively. Other
reproducing strategy can be used as long as it effectively ex-
plores the underlying solution space. Tournament selection is
used to select individuals for reproduction. It is a simple se-
lection method where random K individuals are chosen from
the population. We also use the elitism technique passing the
fittest individual directly to the next generation, ensuring that
the fitness of the population will never decrease. The fitness
function is the most important part of GA since it guides the
algorithm in searching for optimum solution. Two kinds of
DM policy fitness evaluation methods are described in the fol-
lowing sections.

2.2. Policy optimization with a user simulator

Since the fitness function should be consistent with the perfor-
mance of the DM, the most straightforward way is to evaluate
it online with users. But interacting with real user is time-
consuming and labor-intensive, thus an agenda-based user
simulator is utilized [10] and N interactions are conducted
between the simulated user and DM. Average cummulative
reward is used as the fitness for the individual, which is
similar to the objective of common RL algorithms.

FR[πGA] =
1

N

N∑
i=1

li∑
j=1

γj−1rij (1)

Algorithm 2 Episodic fitted Q-iteration

1: Input {(si,t, ai,t+1, si,t+1)} where t ← 1, . . . , Tt − 1,
and i← 1, . . . , N

2: initialize Q-function approximator Q̂(s, a) and arrayQi,t
to 0

3: for l← 1, . . . , Lmax do
4: for i← 1, . . . , N do . for each dialog
5: for t← 1, . . . , Ti − 1 do . for each turn
6: r ← reward(si,t, ai,t+1, si,t+1)
7: if t == Ti − 1 then
8: Qi,t ← r . when the dialog ends
9: else

10: Qi,t ← r + γmaxaQ̂(si,t+1, a)

11: Regress Q̂(s, a) on {(si,t, ai,t+1, Qi,t)}
12: Output: Q̂(s, a)

where rij is the immediate reward and γ the discounted coef-
ficient.

A noisy channel is designed to simulate ASR and SLU
errors. For each dialog act {act, (slot, value)}, re-
placement and deletion are randomly applied to value given
the assigned confidence scores, which are randomly gener-
ated too. The produced N-best hypotheses are then fed into
DMs.

2.3. On-corpus Q-points regression

Building a user simulator is not trivial and it is difficult to
measure the consistency of the simulated user behavior to the
real one. Learning a DM using a dialog corpus is appealing
but there is very limited prior work on this subject [11, 12].
We propose to use an existing dialog corpus to estimate the
fitness of a DM. First, an offline batch RL algorithm is ap-
plied on the corpus, inducing an optimum Q-function Q̂(s, a),
and an implicitly defined policy πQ(s) = argmaxa Q̂(s, a)

which is optimum with respect to the corpus. Then Q̂(s, a) is
used to define the fitness function. We use fitted Q-iteration
[13] to learn a nonparametric approximator Q̂(s, a), as de-
scribed in Algorithm 2. The algorithm uses Bellman equation
(line 10) to update the estimated Q-values. Extremely Ran-
dom Trees (ExtraTrees) [14] are utilized for non-parametric
regression. ExtraTrees are a powerful model for regression
and classification as they are both flexible and less susceptible
to over-fitting. The annotated dialog corpus is represented as
state-action-state triplets in the form of {(st−1, at, st)}, and
used as the training set. Two fitness estimation methods are
proposed based on different heuristics. For an individual πGA
whose fitness to be evaluated, the NPoints fitness function is
used to calculates the number of triplets where the actions
predicted by πGA and πQ are identical.

FNPoints[πGA] =
∑
i

δ(πGA(si), πQ(si)) (2)

793

The QVal fitness attempts to estimate the sum of the Q-values
for the actions predicted by πGA on the training triplets. How-
ever, the Q-function trained on a fixed corpus is often inaccu-
rate in unexplored regions of the state space [15, 11]. To miti-
gate the problem a supervised classifier P̂ (a|s) is built on the
training set with the observed actions as targets. If the prob-
ability for an action is greater than a predefined threshold δ,
the value produced by Q̂(s, a) is used, otherwise a constant
R is used for punishment.

FQVal[πGA] =
∑
i

Q̃δ(si, πGA(si)) (3)

Q̃δ(s, a) =

{
Q̂(s, a) if P̂ (a|s) > δ

R otherwise

The two fitness functions are different in weighing the im-
portance of training instances. FQVal will put a greater ef-
fort in optimizing instances with larger potential Q-value im-
provement while avoiding taking unobserved actions. Com-
bining GA with the above two fitness functions leads to the
on-corpus Q-points regression algorithm. One limitation of
this algorithm compared to the on-line version is that no free
parameter can be present in specifying the action structures
since the fitness functions reply on the result of reinforcement
learning, which does not support dynamical change of action
structure.

2.4. On-corpus DM evaluation

We describe a DM evaluation method on dialog corpus with-
out the need for deploying the DM online. A held-out dialog
corpus is used as testing set, and the estimated cumulative re-
ward for the testing dialogs when following the target DM
policy is used as metric for performance. A similar approach
has been taken in evaluating the effect of different dialog state
tracker on end-to-end performance of a DM [15]. The estima-
tion of Q-function is similar to Algorithm 2. But rather than
learning the optimum policy, the value function for the policy
to be evaluated is estimated, with the Bellman iteration (line
10) in Algorithm 2 changed to:

Qi,t ← r + γQ̂(si,t+1, π(si,t+1)) (4)

where π is the DM policy to evaluate. Then the average re-
ward for starting turns 1

N

∑
iQi,0 is used as a metric for per-

formance.

3. EXPERIMENTS

In this section, the results of simulated and on-corpus eval-
uation are given. In the simulation part, we choose a simple
scenario of restaurant recommendation with 4 slots to fill. The
DM interacts with an agenda-based simulated user in the pres-
ence of a noisy channel, with adjustable parameters to change

the level of noise. In the on-corpus evaluation, DSTC2 dataset
[16] is used for both DM policy learning and evaluation. The
DSTC2 dataset was originally designed as a benchmark cor-
pus for dialog state tracking. With the detailed annotation of
dialog states, actions, SLU outputs and other information, it
can be used as test set for end-to-end DM performance [15].
The dialog states used in both simulated and on-corpus exper-
iments mainly comprise confident scores for each slot.

3.1. On-line learning experiment by simulation

A simple dialog policy template with 6 condition-action
clauses and 4 free parameters is designed, and is sketched as
follows:

c0 On dialog beginning: Welcome

c1 SLU result is empty or the top SLU hypothesis score is
less than θ0: Repeat

c2 User has just denied a slot: Request that slot

c3 There is a slot with score less than θ1 in the tracker:
if the score is larger than θ2 then ExplicitConf else
Request

c4 The system has not yet output the action
RequireMore: RequireMore

c5 Otherwise: query the database with slot-value pairs whose
scores are greater than θ3

The 4 parameters are set heuristically to build a rule-based
DM. An online RL-based Q-learning DM using linear ap-
proximation is built for comparison. The RL-based DMs are
trained in simulated environment with a small probability for
exploration. The noise level is increased incrementally dur-
ing training to allow the DM to encounter noise conditions as
many as possible.. The same reward function and discounted
rate are used in the fitness function of GA, which iterates for
30 generations with a population size of 100. After the train-
ing completes both DMs are tested for 1000 sessions at mul-
tiple noise level. The results are shown in figure 2. The level
of environmental noise is measured using the average confi-
dence score of the top SLU hypotheses.

The results show that when the noise is low (right part
of the plot), i.e., the SLU N-best hypotheses are reliable, the
hand-tuned rule-based DM is very competitive and shows
even better results than the RL-based DM. But when the
noise level of the channel increases, its performance degrades
seriously, while the RL-based DM is much more robust.
However, after tuning of the free parameters using GA, the
GA-DM outperforms both the other DMs on nearly all noise
conditions. Note the points where the plots start to go up-
ward, which represent the minimum noise level at which
a DM could successfully complete a dialog during testing.
The GA-based DM is able to produce sensible results un-
der more adverse environment. It is worth mentioning that

794

0.0 0.1 0.2 0.3 0.4 0.5 0.6

5

10

15

20

25

30

a
v
e
ra

g
e
 l
e
n
g
th

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10

5
0
5

10
15
20
25

a
v
e
ra

g
e
 r

e
w

a
rd

0.0 0.1 0.2 0.3 0.4 0.5 0.6
top SLU hypothesis accuracy

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

 c
o
m

p
le

ti
o
n

GA-DM

Q-learning

Rule-based

Fig. 2: Online evaluation of GA-DM using simulated users
at multiple noise levels. Average cummulative reward, dialog
length and task completion rate are ploted against the average
confidence score of the top SLU hypothesis, which is used as
a metric for environmental noise (a higher value indicates less
noise).

the rule-based and GA-based DM are instantiations of the
same policy template. The simulation results justify GA as
an effective method searching for optimum parameters in
DM policy learning and reveals the performance potential for
simple and yet human-interpretable DM policies.

We also test the effects of the four major clauses c1-c4
individually by disabling each clause and retrain the model
using GA. The results are shown in Figure 3. When C2 is
disabled the performance drops seriously. But to our sur-
prise, when C1 or C4 is disabled, the performance signifi-
cantly boosts especially in high-noise regions. The results
show the relative utility of each clause in the template, and
reveals the necessity to optimize structure of the policy tem-
plate. This kind of structural optimization problem can also
be solved using GA and we leave it to future work.

3.2. On-corpus learning experiment

The DSTC2 testing corpus is used for on-corpus DM learn-
ing and evaluation [16], which is produced by a RL-based
DM and consists of 1117 dialog sessions. The full annota-

0.0 0.1 0.2 0.3 0.4 0.5 0.6
top SLU hypothesis accuracy

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

 c
o
m

p
le

ti
o
n

Rule-based

Full GA-DM

GA-DM-C1

GA-DM-C2

GA-DM-C3

GA-DM-C4

Fig. 3: Performance of the model when the major clauses c1-
c4 are sequentially disabled and retrained. Full GA-DM is the
original model with all clauses enabled.

tions of the dataset are released after the conclusion of the
DSTC2 challenge. The dialog state is the same as defined in
the challenge, and we use the results produced by the ‘focus’
tracker using the scripts provided by the DSTC2 organizer.
The dialog template used by GA comprises 9 condition-action
clauses and 6 free parameters. The original corpus is equally
split for training and testing.

The reward function is defined as follows. At each dialog
turn the agent receives -10.0 reward. If correct restaurants are
offered to users, 100.0 points are rewarded. But if the infor-
mation is duplicate to that previously offered, -50.0 points are
given. If the restaurants offered do not meet user’s demand,
-100.0 points are given. The reward discounting rate γ is set
to 0.9.

In addition to the GA-based DMs trained using QPoints-
regression described in section 2.3, results of 3 additional
DMs are shown for comparison.

1. SL-Original DM which is learned in a supervised
way with the original dialog actions as training targets
using the ExtraTrees classifier, represented as P̂ (a|s).

2. SL-MaxQ supervised DM using the actions with max-
imum Q-value predicted by Q̂(s, a) as the supervised
targets.

3. ThresholdedQ DM as described in [15], which se-
lects the action with the maximum Q-value predicted
by Q̂(s, a) from the set of actions whose probabilities
produced by P̂ (a|s) are greater than δ. The threshold
is used to constrain the behavior of RL policy, in case
of insufficient exploration.

To make full use of the available data and get a more
stable estimation of the performance, we conducted 12 re-
sampling experiments similar to the bootstrapping method,
but avoid to use duplicate samples. In each sub-experiment,
the dataset is reshuffled and split to get new training and test-
ing instances. The average and standard deviation of the re-
sults are shown in Table 1.

795

The SL-MaxQ DM which acts greedily upon Q̂(s, a) has
poor performance on the test set while being overrated on the
training set, probably as a result of insufficient exploration.
The ThresholdedQ DM mitigates the problem to a great
degree by setting a simple threshold. That heuristic is shared
with the QVal fitness function. GA-QVal outperforms all
the other DMs and is very stable across the re-sampling ex-
periments considering the relatively small standard deviation,
while the behavior GA-NPoints which is less consistent re-
sults in an overall inferior performance. Although GA-QVal
is trained under the guidance of an reinforcement learner
Q̂(s, a), its performance is superior to both SL-MaxQ and
ThresholdedQ, which should be attributed to the prior do-
main knowledge incorporated into the policy template. The
DMs in bold outperform SL-Original built by imitating
the policy used in producing the corpus, indicating the possi-
bility of building a better and yet human-comprehensible DM
policy using a dialog corpus.

4. RELATED WORK

The subject of automatically optimizing dialog policies is a
hot topic, and many data-driven methods have been proposed
among which RL-based ones are the most popular. There is
some previous work on constraining the behavior of RL-based
DM. In [17] Williams proposed to construct a hand-crafted
DM and it produces a set of candidate actions for given dialog
state, from which the best one is chosen by a POMDP-DM.
Lison [18] proposed to use ‘probabilistic rule’ in specifying
the transition and reward sub-models of the POMDP model.
The probabilistic rules are human-readable and less parame-
terized than conventional probability distribution, thus reduc-
ing the free parameters of the POMDP model and allowing
the system designers to make use of domain knowledge in de-
signing DM. Our work bears some resemblance to [18]. But
we used the dialog policy template to specify a policy directly
and utilized GA to train the free parameters.

Henderson et al. proposed a hybrid learning method in
[11] to learn a policy on an existing dialog corpus by com-
bining the results of supervised and reinforcement learning.
Pure RL on fixed dataset often shows irregular behavior due
to the insufficient exploration problem. Supervised learning
(SL) is used to mitigate the problem and the hybrid method
shows better performance than pure SL or RL. In this regard
the QVal fitness function is similar in spirit and the use of
policy template can further constrain the DM behavior, thus
is suitable for off-line on-corpus learning.

One notable advantage of the GA-based DM over RL-
based models is that the action structure can be changed dur-
ing learning (only in on-line learning) as described in section
2.1. While in RL, each action ai ∈ A must be invariant oth-
erwise the value function learned will be meaningless. This
characteristic is suitable for SDS engineering since it can be
difficult to determine the exact semantics of a dialog action

DM Training Testing
GA-NPoints 98.46 (38.30) 89.52 (41.30)

GA-QVal 127.38 (5.59) 129.29 (7.90)
SL-Original 115.63 (4.08) 114.39 (6.07)

SL-MaxQ 245.19 (12.59) 53.46 (36.06)
ThresholdedQ 142.48 (4.22) 122.21 (4.36)

Table 1: Estimated cumulative reward of DM policies on
training and testing set. Numbers in brackets are standard
deviation estimated by re-sampling experiments. Only start-
ing turns of a dialog are considered as described in section
2.4. GA-NPoints and GA-QVal are DMs trained using GA
with NPoints and QVal fitness functions respectively.

beforehand. Further studies are needed in this regard.

5. CONCLUSIONS AND FUTURE WORK

In this paper we described a framework to train human-
interpretable spoken dialog management policies using ge-
netic algorithm. Two kinds of fitness functions were used, i.e.,
one based on interacting with a simulated user and the other
on a dialog corpus which is more sample-efficient. We set up
an online simulation environment and used the DSTC2 cor-
pus for off-line on-corpus training and evaluation. The results
show that by using domain language and setting appropriate
free parameters, the performance of simple rule-based DM
policies can be largely improved, and can even outperforms
those trained using reinforcement learning. According to our
knowledge, this is the first time that genetic algorithm is ap-
plied to DM optimization. Another advantage is its ability to
optimize the structure of system actions. This framework is
very suitable to upgrade existing SDSs using rule-based DM,
by using collected data to optimize the newly specified free
parameters.

This research is still preliminary and several aspects need
further investigation, especially the effects of fitness func-
tions. The search space of dialog policy in GA can be ex-
panded by allowing the condition-action expressions to be re-
ordered and partially disabled. The structural learning in sys-
tem actions also needs further studies. We hope this work can
help to build better and practical spoken dialog systems.

6. ACKNOWLEDGEMENT

This work is partially supported by the National Natural Sci-
ence Foundation of China (Nos. 11161140319, 91120001,
61271426), the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant Nos. XDA06030100,
XDA06030500), the National 863 Program (No. 2012AA012503)
and the CAS Priority Deployment Project (No. KGZD-EW-
103-2). We thank the anonymous reviewers for their insight-
ful comments.

796

7. REFERENCES

[1] Jason D. Williams and Steve Young, “Partially observ-
able Markov decision processes for spoken dialog sys-
tems,” Computer Speech & Language, vol. 21, no. 2,
pp. 393–422, 2007.

[2] Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu, “The Hidden Information State model: A practical
framework for POMDP-based spoken dialogue manage-
ment,” Computer Speech & Language, vol. 24, no. 2, pp.
150–174, 2010.

[3] Cheongjae Lee, Sangkeun Jung, Seokhwan Kim, and
Gary Geunbae Lee, “Example-based dialog modeling
for practical multi-domain dialog system,” Speech Com-
munication, vol. 51, no. 5, pp. 466–484, 2009.

[4] Pierre. Lison, Structured Probabilistic Modelling for
Dialogue Management, Ph.D. thesis, University of
Oslo, 2014.

[5] Steve Young, Milica Gašić, Blaise. Thomson, and Ja-
son D. Williams, “POMDP-Based Statistical Spoken
Dialog Systems: A Review,” Proceedings of the IEEE,
vol. 101, no. 5, pp. 1160–1179, 2013.

[6] Tim Paek, “Reinforcement Learning for Spoken Dia-
logue Systems: Comparing Strengths and Weaknesses
for Practical Deployment,” Tech. Rep. MSR-TR-2006-
62, Microsoft Research, 2006.

[7] Yaakov Engel, Shie Mannor, and Ron Meir, “Reinforce-
ment learning with Gaussian processes,” in Proceedings
of the 22nd international conference on Machine learn-
ing. 2005, pp. 201–208, ACM.

[8] Milica Gašić, Filip Jurčı́ček, Simon Keizer, François
Mairesse, Blaise Thomson, Thomson, Kai Yu, and Steve
Young, “Gaussian Processes for Fast Policy Optimisa-
tion of POMDP-based Dialogue Managers,” in Proceed-
ings of the 11th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, Stroudsburg, PA,
USA, 2010, SIGDIAL ’10, pp. 201–204, Association
for Computational Linguistics.

[9] Darrell Whitley, “A genetic algorithm tutorial,” Statis-
tics and Computing, vol. 4, no. 2, pp. 65–85, June 1994.

[10] Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young, “Agenda-based user simula-
tion for bootstrapping a POMDP dialogue system,” in
Human Language Technologies 2007: The Conference
of the North American Chapter of the Association for
Computational Linguistics; Companion Volume, Short
Papers. 2007, pp. 149–152, Association for Computa-
tional Linguistics.

[11] James Henderson, Oliver Lemon, and Kallirroi
Georgila, “Hybrid Reinforcement/Supervised Learning
of Dialogue Policies from Fixed Data Sets,” Computa-
tional Linguistics, vol. 34, no. 4, pp. 487–511, 2008.

[12] Olivier Pietquin, Matthieu Geist, Senthilkumar Chan-
dramohan, and Hervé Frezza-Buet, “Sample-efficient
batch reinforcement learning for dialogue management
optimization,” ACM Transactions on Speech and Lan-
guage Processing (TSLP), vol. 7, no. 3, pp. 7, 2011.

[13] Damien Ernst, Pierre Geurts, and Louis Wehenkel,
“Tree-based batch mode reinforcement learning,” in
Journal of Machine Learning Research, 2005, pp. 503–
556.

[14] Pierre Geurts, Damien Ernst, and Louis Wehenkel, “Ex-
tremely randomized trees,” Machine Learning, vol. 63,
no. 1, pp. 3–42, Mar. 2006.

[15] Sungjin Lee, “Extrinsic Evaluation of Dialog State
Tracking and Predictive Metrics for Dialog Policy Opti-
mization,” in 15th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, 2014, p. 310.

[16] Matthew Henderson, Blaise Thomson, and Jason D.
Williams, “The second dialog state tracking challenge,”
in 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2014, p. 263.

[17] Jason D. Williams, “The best of both worlds: unifying
conventional dialog systems and POMDPs.,” in INTER-
SPEECH, 2008, pp. 1173–1176.

[18] Pierre Lison, “A hybrid approach to dialogue manage-
ment based on probabilistic rules,” Computer Speech &
Language, vol. 34, no. 1, pp. 232–255, 2015.

797

