
INCREMENTAL LSTM-BASED DIALOG STATE TRACKER

Lukas Zilka, Filip Jurcicek

Charles University in Prague, Faculty of Mathematics and Physics
Malostranske namesti 25, 118 00 Prague

ABSTRACT

A dialog state tracker is an important component in modern
spoken dialog systems. We present an incremental dialog
state tracker, based on LSTM networks. It directly uses au-
tomatic speech recognition hypotheses to track the state. We
also present the key non-standard aspects of the model that
bring its performance close to the state-of-the-art and experi-
mentally analyze their contribution: including the ASR confi-
dence scores, abstracting scarcely represented values, includ-
ing transcriptions in the training data, and model averaging.

Index Terms— spoken dialog systems, dialog state track-
ing, recurrent neural networks, LSTM

1. INTRODUCTION

A dialog state tracker is an important component of statistical
spoken dialog systems. It estimates the user’s goals through-
out the dialog by analyzing the automatic speech recognition
(ASR) outputs for the user’s utterances. For example, in the
restaurant information domain, the dialog state tracker can
track what kind of food the user wants and which price range
is he looking for, as a probability distribution over food and
price_range: P(food, price_range).

The state-of-the-art dialog state trackers [1, 2, 3, 4, 5]
achieve their top performance by learning from annotated
data, and they were shown to work well in the restaurant
information domain in the dialog state tracking challenge
DSTC2 [6]. However, they still possess two undesirable
properties. First, they can only track the dialog state turn-
by-turn (as opposed to a more complicated word-by-word
approach), which limits their interaction with users: For ex-
ample, in a typical dialog system [7, 8], the dialog system can

This research was partly funded by the Ministry of Education, Youth
and Sports of the Czech Republic under the grant agreement LK11221, core
research funding, GAUK grant 2076214, SVV project number 260 224 of
Charles University in Prague. This work has been using language resources
distributed by the LINDAT/CLARIN project of the Ministry of Education,
Youth and Sports of the Czech Republic (project LM2010013). Cloud com-
putational resources were provided by the MetaCentrum under the program
LM2010005 and the CERIT-SC under the program Centre CERIT Scientific
Cloud, part of the Operational Program Research and Development for Inno-
vations, Reg. no. CZ.1.05/3.2.00/08.0144. We gratefully acknowledge the
support of NVIDIA Corporation with the donation of the Titan Z GPU used
for this research.

neither provide affirmative natural feedback while the user
is speaking, nor can the system interpret additional informa-
tion said by the user while the system is speaking, both of
which is very natural in human-human communication. And
second, some of the trackers use an intermediate semantic
representation and a spoken language understanding (SLU)
component [9]. As the representation is manually crafted,
it can cause loss of information, and an SLU, if used, is an
additional component of the dialog system that needs to be
trained and tuned.

The main contribution of this paper is an extension of our
LSTM-based [10] dialog state tracker, first described in [11],
which brings its performance close to the state-of-the-art
models. We refer to the tracker as LecTrack1. LecTrack nat-
urally operates incrementally, word-by-word, and does not
require an SLU. It learns from dialog sessions annotated by
dialog state component labels at different time steps. The im-
provements consist of including the ASR confidence scores,
abstracting scarcely represented values, including transcrip-
tions in the training data, and model averaging.

The paper is organized as follows: First, we give a basic
description of the dialog state tracking task in Section 2. In
Section 3, the model of our LSTM dialog state tracker is de-
scribed with its training procedure. The tracker is evaluated
in Section 4. Related work from the literature is discussed in
Section 5. Section 6 concludes the paper.

2. DIALOG STATE TRACKING

The task of dialog state tracking is to monitor progress in the
dialog and provide a compact representation of the dialog his-
tory in the form of a dialog state [6, 12]. Because of uncer-
tainty in the user input, statistical dialog systems maintain a
distribution over all possible states, called the belief state. As
the dialog progresses, the dialog state tracker updates this dis-
tribution given new observations.

In this paper, we define the dialog state at time t as a vec-
tor st ∈ C1 × ... × Ck of k dialog state components, some-
times called slots in the literature. Each component ci ∈ Ci =
{v1, ..., vni} takes one of ni values, and we assume the com-

1(L)STM R(ec)urrent Neural Network Dialog State (Track)er.

757978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015



ponents are independent:

P (st|w1, ..., wt) =
∏
i

p(ci|w1, ..., wt; θ)

Our dialog state tracker, that we describe in the following,
gives the probability distribution only over one of the inde-
pendent components p(ci|w1, ..., wt). A prediction for more
components together is made independently by running dif-
ferent models, specific for each component i.

3. LSTM DIALOG STATE TRACKER

In this section we describe an extended version of the Lec-
Track LSTM dialog state tracking model [11]. The task
of the tracker is to map a sequence of words in the dia-
log to a probability distribution over the values of a dia-
log state component p. For example, for the dialog state
component area, pt is a probability distribution over values
{north, south, east, west} at the time t. Because the input
words may be preprocessed, we refer to them sometimes as
tokens; a sequence of words/tokens a1, ..., at from some a
vocabulary ai ∈ V ocab.

3.1. Model

Our dialog state tracking model is an encoder-classifier
model: LSTM [10]2 is used to encode the information from
the input word sequence into a fixed-length vector represen-
tation, and given this representation, a classifier returns a
probability distribution over the values for the dialog state.
The input consists of words which were recognized by ASR
along with their confidence scores. The words are represented
as embeddings, and before they are passed to the LSTM, a
single-layer neural network is used to create new word em-
beddings, accounting for the confidence score. An example of
the model applied to a particular input sentence is at Figure 1.

Formally, we have an input neural network that maps the
word a and its ASR confidence score r to a joint representa-
tion u:

u = NN(a, r)

The representation u is used by the LSTM encoder along with
the previous hidden state qt−1 = (ct−1, ht−1)

3 to create a
new hidden state qt:

qt = Enc(u, qt−1)

The classifier, represented by a single softmax layer, then
maps the hidden state to a probability distribution over all
possible values:

pt = C(ht)

2Contrary to the original LSTM formulation we use tanh activation in-
stead of sigmoid for the input gate.

3The state of a standard LSTM model consists of two components.

Fig. 1. A demonstration of the LecTrack LSTM dialog state
tracker applied to a user utterance “looking for chinese food”.
The encoding LSTM model Enc is sequentially applied to
each input word and its hidden state is used to feed to the
state component classifiers.

Put together, these components make up LecTrack, which
maps an input ASR word and score sequence into a sequence
of dialog state estimates

LecTrack : (a1, r1)..., (an, rn)→ p1, ..., pn

∀i ∈ 1, ..., n : qi = (ci, hi) = Enc(NN(a1, r1), qi−1)

∀i ∈ 1, ..., k : pi = C(hi)

where n is the length of the input sequence.

3.2. Improvements

In this subsection, we describe the modifications we make to
the original tracker [11].

Note that contrary to the original model, the new model
described in this paper is factored by dialog state components.
We empirically found that it converges faster and more reli-
ably, and it also makes the model simpler and standard (be-
cause now the model is a standard multi-class classification,
as opposed to a multi-target (tracking multiple state compo-
nents at once) classification before, which allows the use of
the standard neural-network toolkits available on Internet for
implementation). Tracking of more dialog state components
is achieved simply by instantiating more LSTM models in
parallel.

3.2.1. Including ASR scores

The original model did not make use of the ASR 1-best
hypothesis confidence scores. When the model does not
have this information, the only possible way to learn not
to trust the input is by learning which word patterns corre-
spond to well-recognized speech and which are typical for
erroneously-recognized speech. Therefore, we decided to
include the confidence score of the input hypothesis as an
additional dimension to each input word embedding, and
add one fully-connected non-linear layer between this input
and the LSTM, so that the model can learn to transform the
embeddings according to the confidence score.

758



3.2.2. Including Transcriptions in Training Data

Our training data are noisy due to ASR errors, and it is a
common practice to expand the training set to reduce the
noise. We thus decided to mix the ASR 1-best hypotheses
with the true manually-transcribed user utterances to form
an expanded training set, which should reduce the amount of
noise.

3.2.3. Model Averaging

Following [1, 6], where the authors successfully use a simple
model averaging strategy to boost the performance of their
models, we train 10 different models from 10 different ran-
dom initializations and average their predictions.

3.2.4. Abstracting low-occurring values

Our model has little chance of learning to properly predict
state component values that do not occur frequently in the
training data set. We thus decided to substitute the ones that
occur less than 40 times in the training set by an abstract
value. This threshold was chosen empirically from the devel-
opment set, by looking at how many examples of a particular
value are needed to achieve a reasonable accuracy. As a result,
we replace each occurrence of such a low-occurring value by
an abstract token, e.g. jamaican for #food1. Occurrences of
the same value are replaced by the same abstract token, and
if a different value is encountered we create another abstract
token, e.g. #food2. For each of these abstract tokens we need
to add a new class to the classifier. During tracking, the clas-
sifier output is post-processed and these values are substituted
back, e.g. prediction #food1 for jamaican.

This modification makes the tracker able to track values
that it has never seen in the training data, by manually putting
them in the abstraction dictionary. Also, because the frequent
values are not being abstracted the tracker can still learn ASR
error patterns for them. This idea is similar to [6] who ab-
stracted out everything and included both abstracted and non-
abstracted features as the input to his model.

3.3. Training

The training criterion is a cross-entropy loss [13] for a dialog
example, which is annotated by true lables at some points in
time:

l(θ) = −
∑
t∈Y

log LecTrack(a1, r1, ..., an, rn)
t
yt

Here, yi denotes a label for the dialog state at time i, and
Y is a set of times where the label yi exists (times that corre-
spond to the end of turns, because in our experiments we have
labels only for them). LecTrack(.)mn denotes the probability
of the n-th value at time m.

We fit the model using ADAM optimization algorithm [14].
All parameters are initialized randomly from a zero-mean

Gaussian with
√

2.0
d variance [15] (where d is the dimension-

ality of the input for the layer), apart from the biases of the
LSTM forget gates, which are initialized to 1.0 [16].

After each optimization epoch, we monitor the perfor-
mance4 of the model on a held-out set D. When the per-
formance stops increasing for several iterations, we terminate
the training and select the best-performing model.

4. EXPERIMENTS

4.1. Dataset

To train and evaluate our model, we use the DSTC2 [6] data
set. The DSTC2 data consists of about 3,000 dialogs from the
restaurant information domain, each dialog is 10 turns long
on average. The data is split into training, development and
test sets.

Our model is incremental and does not explicitly repre-
sent turns, but the DSTC2 data set contains only turn-based
dialogs. So we treat each dialog in DSTC2 as a sequence of
words in time, where the dialog state labels are always at-
tached to the last word of the turn. Ideally we would run the
evaluation on a data set where we could also measure the in-
cremental capabilities of the tracker, but to the best of our
knowledge, no such data set is publicly available yet, and we
leave the collection and experimentation on such a data set for
future work.

In our experiments, the word embeddings have 170 di-
mensions, the input network has 300 output units with ReLU
on top, LSTM encoder has 100 cells, and we train using full
network unrolling in time in mini-batches of 10 dialogs.

4.2. Baseline

A baseline system for this domain has been provided by the
DSTC2 organizers. It uses the SLU results and confidence to
rank hypotheses for the values of the individual dialog state
components. There were several baselines described in [6];
we report the results of the focus baseline, which was the best
among them.

4.3. Data Preprocessing

Each dialog turn consists of the system and the user ut-
terance. We serialize both of them into a stream of pairs
(word/token, ASR confidence score) as the in-
put to our model.

System Utterance Preprocessing: To get the system input,
we perform a simple preprocessing. We flatten the system di-
alog acts of the form act_type(slot_name=slot_value)

4See Subsection 4.4 for the description of the featured metrics.

759



into a sequence of three tokens t1, t2, t3, where t1 = act_type,
t2 = slot_name and t3 = slot_value. For example request
(slot=food) is converted into request, slot, food, which
the model then sees as a word sequence of length three.

User Utterance Preprocessing: For the sake of simplicity,
we use only the best live-ASR hypothesis5 (we refer to it as
ASR 1-best) and ignore the rest of the n-best list. It is not
obvious how to incorporate more ASR hypotheses into an in-
cremental dialog state tracker in a good way and we plan to
address this issue in our future work.

Out-of-Vocabulary Words: Out-of-Vocabulary words are
randomly mixed into the training data to give the model a
chance to cope with unseen words: At training time, a word
in the user input is replaced by a special out-of-vocabulary
token with a probability α6. At test time, this token is used to
represent all unknown words.

4.4. Evaluation Metrics

We follow the DSTC2 methodology [6] and measure the ac-
curacy and L2 norm of the joint slot predictions. The joint
predictions are grouped into the following groups: Goals, Re-
quested, Method. The results of each group are reported sep-
arately.

For each dialog state component in each dialog, the mea-
surements are taken at the end of each dialog turn7.

To asses the effect of the individual improvements over
the base model described in Subsection 3.2, we evaluate the
following configurations that cumulatively add the different
improvements on top of each other:

(base) Base model without the proposed improvements [11].

(score) Include scores.

(transcr) Include transcriptions.

(abstract) Abstract low-occurring classes.

(model avg) Model Averaging.

(dontcare oracle) Don’t care oracle (detailed later).

4.5. Results

The results of all evaluated LecTrack configurations on the
DSTC2 data are summarized in Table 1. The results from
DSTC2 are publicly available along with the output of the

5There are batch and live ASR results in the DSTC2 data. We use the live
ones and refer to them as live-ASR.

6Throughout this paper we use α = 0.1.
7The measurements are taken at the end of each dialog turn, provided the

component has already been mentioned in some of the SLU n-best lists in the
dialog. Note we do not use the SLU n-best list in our model at all, but we
adapt this metric to be able to compare to the other trackers in DSTC2.

trackers on test data set so we try to compare our tracker
to [2], which we refer to as RNNTrack, to see in greater detail
where are our strengths and weaknesses.

LecTrack’s accuracy in its strongest configuration (model avg)
is better than the baseline and comes close to the state-of-the-
art, with the exception of the Goal group on the test data
set. Note that the model has never seen test data set during
training, and development data set was used for selecting the
best model seen during the training.

4.5.1. Test set performance difference

We attribute the performance difference for the Goal group
between the development and test data sets to a substantial
difference between the dialog systems used for the two data
sets. The training and development data sets were collected
using a different dialog system than the test data set.

The dialog system in the test dataset produces on average
about 25% longer system utterances (measured in the number
of input words/tokens), which can influence the stability of
the LSTM predictions due to increased number of time steps.
Also, the distributions of the slot values differ substantially,
particularly for the dont care value.

Other trackers from the literature do not have this issue
because they all extract features from the complete turn and
thus are not influenced by the length of the utterances.

We believe we can address the different lengths of the sys-
tem utterances by considering the system utterance separately
and injecting it into the stream of user words just as a single
special token. This way the system input is always long one
token, regardless of the dialog system used.

4.5.2. Improvements

Our improvements mostly affect the performance of the
tracker on the Goal group. The base tracker already per-
forms well on the Method and Requested groups so the
improvements there are modest.

Model averaging proved to provide a substantial improve-
ment in performance. This is in accordance with other ap-
proaches that also combine multiple models to produce the
final predictions. There is a body of work on compressing the
model ensemble back into a single model [17, 18, 19], which
appears as an interesting future research direction.

Including true transcriptions in the training yields almost
as big improvement to the results as model averaging. The
size of the training corpus is quite small (only about 1500 di-
alogs) and without the transcriptions, some values were never
seen in their correct form in the training data. Moreover, with
the transcriptions, the tracker is more biased towards learn-
ing the correct generalization patterns and can learn to correct
some typical ASR mistakes.

Including ASR confidence scores only gives a modest per-
formance improvement on the test set. This fact is surpris-
ing because we believe the ASR confidence scores are very

760



Development set Test set
Goal Method Requested Goal Method Requested

model Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2
baseline 0.61 0.63 0.83 0.27 0.89 0.17 0.72 0.46 0.90 0.16 0.88 0.20
LecTrack (base) 0.63 0.74 0.90 0.19 0.96 0.08 0.62 0.75 0.92 0.15 0.96 0.07
LecTrack (score) 0.63 0.73 0.89 0.20 0.96 0.07 0.64 0.73 0.92 0.16 0.96 0.07
LecTrack (transcr) 0.66 0.69 0.90 0.20 0.97 0.07 0.67 0.65 0.92 0.15 0.97 0.07
LecTrack (abstract) 0.67 0.65 0.90 0.20 0.97 0.07 0.68 0.64 0.93 0.14 0.97 0.06
LecTrack (model avg) 0.69 0.71 0.90 0.19 0.97 0.07 0.72 0.64 0.93 0.14 0.97 0.06
LecTrack (dontcare oracle) 0.75 0.50
turn-based RNN [2] 0.70 0.46 0.92 0.14 0.97 0.06 0.77 0.35 0.94 0.10 0.98 0.04
state-of-the-art [1] 0.71 0.74 0.91 0.13 0.97 0.05 0.78 0.35 0.95 0.08 0.98 0.04

Table 1. Performance on the DSTC2 data.

important for tracking, otherwise the tracker does not have a
clear signal about the correctness of the user utterance.

4.5.3. Slot Food

The slot food is arguably the most difficult slot for the tracker
because it takes 91 values and is frequently talked about.
Therefore, we chose it for a more detailed analysis of the
tracker’s results.

The most frequent value in the slot food is dont care
value, which is the result of the user saying “I don’t care” after
the system prompted him for the type of food he wants. How-
ever, the decision whether the user does not care about food
or something else is dependent on the system prompt, and
the tracker must make use of this information. Our system
achieves 81% accuracy for the dont care value, whereas
RNNTrack [2] achieves 91%. This suggests that our tracker
is not able to properly learn the dependency between the sys-
tem and user utterances. A brief manual examination of other
prediction errors confirms this.

The dont care values makes up 25% of the correct la-
bels in the test data but only 15% in the development data,
which is another reason for the difference in performance be-
tween the two datasets. Indeed, when we treat RNNTrack as
an oracle to provide the dont care and null predictions
(for all slots, not just slot food), we beat the baseline and come
close to state-of-the art (LecTrack (dontcare oracle) line in Ta-
ble 1).

5. RELATED WORK

The only other incremental dialog trackers known to us
are [20, 21]. In [20] the tracking is performed by a pars-
ing algorithm with a manually prepared grammar. In [21],
the authors describe an incremental dialog system for number
dictation as a specific instance of their incremental dialog
processing framework. To track the dialog state, they use a
discourse modeling system which keeps track of confidence

scores from semantic parses of the input; these are produced
by a grammar-based semantic interpreter with a hand-coded
context-free grammar. Unlike our system, both discussed
trackers require handcrafted grammar and an explicit seman-
tic representation of the input.

Using RNN for dialog state tracking has been proposed
before [2, 22]. The dialog state tracker in [2] uses an RNN,
with a very elaborate architecture, to track the dialog state
turn-by-turn. Similarly to our model, their model does not
need an explicit semantic representation of the input. They
also use a similar abstraction of low-occurring values (they
call the technique “tagged n-gram features”), which should
result in better generalization on rare but well-recognized val-
ues.

We use only 1-best ASR hypothesis and achieve near
state-of-the-art results, while the other tracking models from
the literature [1, 2, 3, 5] typically use the whole ASR/SLU
n-best list as an input.

6. CONCLUSION

We presented new improvements in our LecTrack incremental
LSTM-based dialog state tracker [11], which make the tracker
close to state-of-the-art results on the DSTC2 data set. The
tracker works incrementally word-by-word and does not need
a separate SLU component. The largest improvement was
achieved by including the transcriptions in the training data
set, and by using an ensemble of models. Minor improve-
ments were brought by including ASR hypothesis scores and
value abstraction. We also demonstrated that it is enough to
use 1-best hypothesis only to achieve near state-of-the-art re-
sults in dialog state tracking on DSTC2 data set.

In future, we would like to investigate why the ASR hy-
pothesis confidence score does not play a bigger role in our
model, what techniques to employ to reduce the need for the
model averaging, and how to use the tracker in a real incre-
mental dialog system.

761



7. REFERENCES

[1] Jason D Williams, “Web-style ranking and slu combina-
tion for dialog state tracking,” in 15th Annual Meeting of
the Special Interest Group on Discourse and Dialogue,
2014, p. 282.

[2] M. Henderson, B. Thomson, and S. J. Young, “Word-
based Dialog State Tracking with Recurrent Neural Net-
works,” in Proceedings of SIGdial, 2014.

[3] Byung-Jun Lee, Woosang Lim, Daejoong Kim, and
Kee-Eung Kim, “Optimizing generative dialog state
tracker via cascading gradient descent,” in 15th Annual
Meeting of the SIGDD, 2014, p. 273.

[4] Ronnie W Smith, “Comparative error analysis of dia-
log state tracking,” in 15th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, 2014, p.
300.

[5] Kai Sun, Lu Chen, Su Zhu, and Kai Yu, “The sjtu system
for dialog state tracking challenge 2,” in 15th Annual
Meeting of the Special Interest Group on Discourse and
Dialogue, 2014, p. 318.

[6] Matthew Henderson, Blaise Thomson, and Jason
Williams, “The second dialog state tracking challenge,”
in 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2014, p. 263.

[7] Ondrej Dušek, Ondrej Plátek, Lukáš Žilka, and Filip Ju-
rcícek, “Alex: Bootstrapping a spoken dialogue system
for a new domain by real users,” in 15th Annual Meet-
ing of the Special Interest Group on Discourse and Dia-
logue, 2014, p. 79.

[8] Stephanie Young, Milica Gasic, Blaise Thomson, and
John D Williams, “Pomdp-based statistical spoken dia-
log systems: A review,” Proceedings of the IEEE, vol.
101, no. 5, pp. 1160–1179, 2013.

[9] Ye-Yi Wang, Li Deng, and Alex Acero, “Spoken lan-
guage understanding,” Signal Processing Magazine,
IEEE, vol. 22, no. 5, pp. 16–31, 2005.

[10] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[11] Lukas Zilka and Filip Jurcicek, “LecTrack: Recurrent
Neural Network Dialog State Tracker,” in Proceedings
of the TSD 2015 Conference (to appear), 2015.

[12] Lukas Zilka, David Marek, Matej Korvas, and Filip Jur-
cicek, “Comparison of bayesian discriminative and gen-
erative models for dialogue state tracking,” in Proc. of
the SIGDIAL 2013 Conf., 2013.

[13] Reuven Y Rubinstein and Dirk P Kroese, The cross-
entropy method: a unified approach to combinato-
rial optimization, Monte-Carlo simulation and machine
learning, Springer Science & Business Media, 2004.

[14] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” .

[15] David Sussillo, “Random walks: Training very deep
nonlinear feed-forward networks with smart initializa-
tion,” CoRR, vol. abs/1412.6558, 2014.

[16] Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever, “An empirical exploration of recurrent
network architectures,” pp. 2342–2350.

[17] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua Ben-
gio, “Fitnets: Hints for thin deep nets,” arXiv preprint
arXiv:1412.6550, 2014.

[18] Cristian BuciluÇŐ, Rich Caruana, and Alexandru
Niculescu-Mizil, “Model compression,” in Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp.
535–541.

[19] Jimmy Ba and Rich Caruana, “Do deep nets really need
to be deep?,” in Advances in Neural Information Pro-
cessing Systems, 2014, pp. 2654–2662.

[20] Mikio Nakano, Noboru Miyazaki, Jun-ichi Hirasawa,
Kohji Dohsaka, and Takeshi Kawabata, “Understanding
unsegmented user utterances in real-time spoken dia-
logue systems,” in Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics on
Computational Linguistics. Association for Computa-
tional Linguistics, 1999, pp. 200–207.

[21] Gabriel Skantze and David Schlangen, “Incremental di-
alogue processing in a micro-domain,” in Proc. of the
12th Conf. of EC-ACL. Association for Computational
Linguistics, 2009, pp. 745–753.

[22] M. Henderson, B. Thomson, and S. J. Young, “Deep
Neural Network Approach for the Dialog State Tracking
Challenge,” in Proceedings of SIGdial, 2013.

762


