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ABSTRACT

This paper describes the ViVoLab speaker diarization sys-

tem for the Multi-Genre Broadcast (MGB) Challenge at

ASRU2015. The challenge data consisted of BBC TV pro-

grammes of different genres. Diarization followed a longi-

tudinal setup, i.e., the speakers of the current episode had to

be linked to the speakers in previous episodes of the same

show. We propose a system based on the i-vector paradigm.

After an initial segmentation step, we compute an i-vector per

speech segment. Then, a generative model based on Bayesian

PLDA clusters the speakers. In this model, the speaker labels

are latent variables that we optimize by variational Bayes iter-

ations. The number of speakers in each episode was decided

by maximizing the variational lower bound. The system in-

cludes several phases of segment-merging and re-clustering.

We re-compute i-vectors after each merging step, which re-

duces the i-vector uncertainty. This approach attained a DER

around 30% in the development set.

Index Terms— Speaker Diarization, i-vectors, PLDA,

variational Bayes, MGB challenge

1. INTRODUCTION

The Multi-Genre Broadcast (MGB) Challenge at ASRU 2015

is an evaluation of speech recognition and diarization systems

on BBC TV recordings [1]. It includes multiple TV shows

of different genres. The evaluation consists of four tasks:

speech-to-text transcription, subtitle alignment, longitudinal

speech-to-text transcription and longitudinal speaker diariza-

tion. In this paper, we present the diarization system that we

submitted to the diarization track. This task followed a lon-

gitudinal setup, i.e., to process one episode we can use infor-

mation of previous episodes of the same show, and we have

to link the speakers between episodes. Only the data provided

by the organizers could be used to train background models,

PLDA, etc. This fact is challenging since most of this data

did not include reliable speaker labels.

This work has been supported by the Spanish Government through

project TIN2014-54288-C4-2-R and by the European Unions’s FP7 Marie

Curie action, IAPP under grant agreement no. 610986.

Speaker diarization is a problem related to speaker recog-

nition that determines “who spoke when”. The interest for

this topic has rapidly increased in the last years. It has appli-

cation on telephone conversations, meetings, broadcast news,

movies, etc. Besides, the explosion of multimedia content

in the Internet requires of automatic means to index that in-

formation. Detailed reviews about the diarization technology

evolution can be found in [2, 3].

The first successful diarization systems were bottom-up

approaches based on segmentation of acoustic features by

Bayesian Information Criterion (BIC) [4] followed by Ag-

glomerative Hierarchical Clustering (AHC) [5]. With the

advent of joint factor analysis (JFA) [6], we find approaches

based on clustering streams of speaker factors [7, 8]. These

approaches compute speaker factors using a sliding window

of about 1 second length. The speaker factors are, then, clus-

tered combining several metrics and algorithms like PCA,

K-means, GMM, etc. Also based on JFA, we find approaches

using variational Bayes (VB) [9, 10]. In these approaches,

both speaker factors and speaker labels are latent variables

that are jointly estimated by maximizing a lower bound on

the data likelihood.

In this work, we mix stream methods and variational

Bayes. First, we extract a stream of i-vectors [11] from the

speech file. Then, variational Bayes PLDA clusters those

i-vectors into speakers. This approach was used successfully

for training PLDA models with unlabeled datasets [12, 13].

This paper is organized as follows. Section 2 describes

the structure of our speaker diarization system. Sections 3

to 5 explain the building blocks of the system: initial seg-

mentation, i-vector extraction, and clustering based on VB

PLDA. Section 6 describes the experimental setup, including

the dataset, and it details the configuration of the system. Sec-

tion 7 discusses the results on the development and evaluation

data. Finally, Section 8 summarizes the conclusions.

2. DIARIZATION SYSTEM DESCRIPTION

Figure 1 shows the diagram of our longitudinal speaker di-

arization system. The system receives the speech signal s(n)
of the current episode, the i-vectors Φ0 corresponding to the
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Fig. 1: Block diagram of the longitudinal speaker diarization system.

speakers in previous episodes of the show, and the speaker la-

bels associated to them θ0. The outputs of the system are the

final segments with their time stamps T, i-vectors for each of

the speakers in the episode Φ with their speaker labels θ, and

the i-vectors and labels of the previous episodes.

The system uses MFCC as features. We used the base-

line VAD provided by the organizers. We perform an initial

segmentation based on Bayesian Information Criterion (BIC).

The purpose of this step is to find changes of the speakers’

turns in the episode. Thus, we obtain many short-segments

containing a single speaker. Then, we compute an i-vector

per speech segment. The i-vectors are clustered into speakers

by variational Bayes PLDA, explained in detail in Section 5.

We add the i-vectors of the previous episodes to carry out the

speaker linking between episodes.

With the labels of the first clustering, we merge together

contiguous segments that have been assigned to the same

speaker. After that, we recompute the i-vectors. The reason

to do this is that i-vectors computed with longer segments

have less uncertainty and more discriminant power. Then,

we cluster the new i-vectors again. We repeat the process of

merging adjacent segments, recompute i-vectors and reclus-

tering once more to obtain the final clustering. The final step

consists in merging all the segments with the same speaker

id. and compute one i-vector per speaker. We pass these

i-vectors together with the i-vectors of previous episodes to

the next episode.

3. BIC SEGMENTATION

The initial speaker change points are detected using a Bayesian

Information Criterion (BIC) distance metric [4, 5]. This

method searches for change points in a window of features.

The window grows until a change point is detected. Then, the

window is reset to start in the change point and the search for

the next change point starts again. For each point in the win-

dow, we compute a penalized likelihood ratio test between

the hypothesis (H0) that the window is better modeled by two

distributions, one for each side of the change point candidate;

and the hypothesis (H1) that the window is better modeled by

a single distribution. That is the difference of BIC values,

∆BIC = log(R)− λP (1)

where R is the likelihood ratio between both hypothesis, P is

a penalty term that measures the excess of complexity of H0

w.r.t. H1 and λ is a scaling hyperparameter. Full covariance

Gaussians were used to model the windows distributions.

4. I-VECTOR EXTRACTION

The i-vector paradigm [11] is an extension of the GMM-UBM

approach [14], where a speech segment is modeled by a Gaus-

sian mixture model (GMM). The i-vector approach assumes

that the super-vector mean M of the segment GMM can be

written as

M = m+Tφ (2)

where m is the UBM means super-vector, T is a low-rank

matrix and φ is a standard normal distributed vector. T de-

fines the total variability space, i.e. the directions in which

we can move the UBM to adapt it to a specific segment.

Using this model, we can compute the posterior distribu-

tion of φ given the segment data. This posterior is Gaussian

distributed and the mean of this distribution is referred as the

i-vector in the literature. Thus, we can model a sequence of

variable length with a single feature vector. The i-vector be-

comes a new feature for pattern classification algorithms like

SVM [15] and PLDA [16, 17].

It has been observed that normalizing the i-vector by its

magnitude–known as length normalization–improves the dis-

criminant power of the i-vector [18]. Before length normal-

ization, we center and whiten the i-vectors to assure that they

are evenly distributed in the unit hypersphere.
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Fig. 2: BN for unsupervised SPLDA.

5. CLUSTERING WITH UNSUPERVISED PLDA

5.1. Model description

We introduced the Unsupervised PLDA model in [12, 13]. In

those works, this model was used to train probabilistic lin-

ear discriminant analysis (PLDA) on a dataset with unknown

speaker labels. Speaker clustering and model parameters esti-

mation was performed iteratively. Here, we apply this model

to the speaker clustering phase of our diarization system.

The model is based on Simplified PLDA (SPLDA), that is

a linear generative model that assumes that an i-vector φj of

speaker i can be written as:

φj = µ+Vyi + ǫj (3)

where µ is a speaker independent term, V is a low rank eigen-

voices matrix, yi is the speaker factor vector, and ǫj is the

within class variability term. We put a standard normal prior

on yi and normal with zero mean and precision W on ǫj .

Figure 2 depicts the Bayesian network of this model

where the speaker labels θ of the data are hidden. θ parti-

tions N i-vectors into M speakers. θj is a latent variable

comprising a 1–of–M binary vector with elements θji with

i = 1, . . . ,M . Note that the distribution of each speaker

is assumed to be Gaussian with mean µ + Vyi and preci-

sion W. The set of all the speakers forms a GMM where θ
corresponds to the component occupations. The conditional

distribution of θ given the mixture weights πθ is

P (θ|πθ) =

N
∏

j=1

M
∏

i=1

π
θji
θi

. (4)

We put a Dirichlet prior on the weights:

P (πθ|τ0) = Dir(πθ|τ0) = C(τ0)

M
∏

i=1

πτ0−1
θi

(5)

where, by symmetry, we choose the same τ0 for all the com-

ponents, C(τ0) is the normalization constant,

C(τ0) =
Γ(Mτ0)

Γ(τ0)M
(6)

and Γ is the Gamma function.

5.2. Model priors

In [12], we compared two versions of this model: one where

the model parameters were point estimates and another where

the model parameters are hidden variables with prior and pos-

terior distributions. The latter–using weak informative priors–

produced PLDA models with lower error rates. Here again,

we use the fully Bayesian version where µ, V and W are

latent variables.

We put a hierarchical prior P (V|α) over V [19] through

a conditional Gaussian distribution of the form:

P (V|α) =

ny
∏

q=1

(αq

2π

)d/2

exp

(

−
1

2
αqv

T
q vq

)

(7)

where vq are the columns of V and ny is the speaker fac-

tors dimension. Each αq controls the inverse variance of the

corresponding vq . If a particular αq has a posterior distribu-

tion concentrated at large values, the corresponding vq will

tend to be small, and that direction of the latent space will be

effectively ”switched off”.

We defined a prior for α:

P (α) =

ny
∏

q=1

G (αq|aα, bα) (8)

where G denotes the Gamma distribution.

We placed a Gaussian prior for the mean µ:

P (µ) = N
(

µ|µ0, β
−1I

)

. (9)

Low values of aα, bα and β make the priors less informative

and vice versa.

Finally, we put a Wishart prior on W,

P (W) =W (W|Ψ0, ν0) . (10)

5.3. Variational Bayes approximation

The equations of this model cannot be solved in close form

so we used a variational Bayes approximation. We approxi-

mated the joint posterior of the latent variables by a factorized

distribution of the form:

P (Y, θ, πθ, µ,V,W, α|Φ) ≈

q (Y) q (θ) q (πθ)

d
∏

r=1

q (ṽ′
r) q (W) q (α) (11)

where ṽ′
r is a column vector containing the rth row of Ṽ =

[V µ]. If W were diagonal the factorization
∏d

r=1 q (ṽ
′
r)

would not be necessary because it would arise naturally.

However, for full W, we have to force the factorization to

make the problem tractable.
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We computed these factors by using variational Bayes [20]

with deterministic annealing (DA) [21]. The formula to up-

date a factor ql is

ln q∗l (Zl) = Em 6=l [κ lnP (Φ,Z)] + const (12)

where Z abbreviates the set of all hidden variables, Zl are the

hidden variables corresponding to the lth factor, and κ is the

annealing factor; expectations are taken with respect to all the

factors m 6= l. We can prove that Equation (12) optimizes the

VB lower bound

L = E [lnP (Φ,Z)]− E [ln q (Z))]

= lnP (Φ)−KL (q (Z) ||P (Z|Φ)) (13)

where expectations are taken with respect to the variational

posterior q (Z). L is an approximation of the marginal likeli-

hood of the data lnP (Φ), which becomes equality when ap-

proximated posterior is equal to the true posterior. Annealing

modifies the VB objective in a way that helps to avoid local

maxima. We must set κ < 1 at the beginning and increase it

as κ← 1.1κ in each iteration until κ = 1.

The full VB equations can be found in our report [22].

5.4. Initialization with AHC

The VB algorithm needs some initialization for the speaker

labels. We initialized them with Agglomerative Hierarchi-

cal Clustering (AHC) [23]. AHC is a greedy bottom-up ap-

proach. Initially, each i-vector is its own cluster and, then,

clusters are progressively merged using a similarity criterion.

Thus, we start with the pair-wise score matrix between all the

development i-vectors. This score matrix is obtained with an

initial PLDA model or cosine similarity. Then, we use a link-

age criterion to determine the similarity between the clusters

A and B, s(A,B), as a function of the pair-wise scores be-

tween their elements s(a, b). In [13], we tried several linkage

criteria (average, complete and single) obtaining better results

with the average criterion,

savg(A,B) =
1

|A||B|

∑

a∈A

∑

b∈B

s(a, b) . (14)

5.5. Model selection

This model requires to hypothesize, the number of speakers

in the dataset. As the number of speakers M is unknown, we

ran the AHC+VB algorithm several times, each time hypoth-

esizing a different M . We assumed that the best model is the

one that obtains the largest VB lower bound L(M). To fairly

compare lower bounds for different M , the Dirichlet prior on

the speaker weights needs to be such that the product Mτ0
is constant. We do several iterations to find the best M , in

each iteration we try 5 different M values. Depending on the

resulting lower bounds, we choose the M values to try in the

next iterations, until we find the optimum value for M .

5.6. Applications of the model

5.6.1. Unsupervised PLDA training

We can use this model to train PLDA on a dataset with un-

known labels. In this work, we trained PLDA combining the

development data, which was labeled, and the training data,

which was unlabeled. The variational factors of the model

parameters (µ, V, W and α), the speaker factors of the train-

ing and development set (q (YDEV) q (YTRN)) and the labels

and label priors of the training set (q (θTRN) and q (πθTNR
))

are updated iteratively. Besides, we did not allowed common

speakers between different shows, but we allowed common

speakers between episodes of the same show.

5.6.2. Diarization clustering

In the clustering steps of the diarization system, we only up-

date the variational posteriors corresponding to the speaker

factors q (Y), and the speaker labels q (θ) and the label priors

q (πθ). The variational factors corresponding to the PLDA

model parameters were not updated, we kept the ones ob-

tained in the training step.

6. EXPERIMENTAL SETUP

6.1. MGB Challenge dataset

The MGB Challenge data consisted of BBC TV recordings of

different genres [1]. The dataset was divided into three parts:

training, development and evaluation. The training set con-

sisted of 2193 episodes of 419 different shows with a total of

1600 hours of audio. This set included the BBC subtitles and

metadata like speaker changes and time stamps. The orga-

nizers refined the metadata using a slightly supervised align-

ment [1]. We trained the UBM and the i-vector extractor on

this set. The evaluation rules do not allowed using data from

other sources to train i-vector extractors or PLDA.

The development set included 5 shows: “Doctor Who”

(Show 1, 2 episodes), “Last of the summer” (Show 2, 6

episodes), “Springwatch” (Show 3, 3 episodes), “The Alan

Clark Diaries” (Show 4, 6 episodes), “UEFA Euro2008”

(Show 5, 2 episodes). The diarization task followed a lon-

gitudinal setup, i.e., the speakers of the current episode had

to be linked to the speakers in previous episodes of the same

show. The development set was used to evaluate the perfor-

mance of our systems and to tune hyperparameters such as

i-vector dimension, VBPLDA priors, etc. As this was the

only set with reliable speaker labels, we used it to train the

VBPLDA model posteriors. Also, we combined the develop-

ment and train set to train VBPLDA with mixed and hidden

speaker labels.

Finally, the evaluation set included 2 shows: “Celebrity

masterchef” (Show 6, 11 episodes), “The culture show un-

cut” (Show 7, 8 episodes). A baseline clustering and VAD are

provided with this dataset. The organizers ranked the partici-

pants submissions on this set.
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Table 1: DER(%) on development set for different systems. GTS stands for ground truth segmentation, BICS denotes BIC

segmentation, GTNS denotes ground truth Number of speakers, GTVAD denotes ground truth VAD, PLDA1 was trained on the

dev. set and PLDA2 was trained on the train and dev. sets.

Total Show 1 Show 2 Show 3 Show 4 Show 5

Not linked

GTS+GTNS+PLDA1 24.49 46.70 37.15 12.39 20.37 18.19

GTS+PLDA1 (cont. 1) 24.32 49.33 38.31 12.84 19.41 12.91

GTVAD+BICS+PLDA1 (cont. 4) 28.05 52.61 48.09 11.32 23.79 17.22

GTS+PLDA2 (primary) 22.80 44.70 35.24 13.44 18.49 10.65

GTVAD+BICS+PLDA2 (cont. 8) 27.41 53.76 47.01 10.37 22.76 17.39

Linked

GTS+GTNS+PLDA1 28.07 47.25 44.19 12.85 24.44 24.83

GTS+PLDA1 (cont. 1) 27.72 49.81 46.84 13.11 24.38 13.67

GTVAD+BICS+PLDA1 (cont. 4) 31.05 53.54 54.35 11.65 29.12 17.70

GTS+PLDA2 (primary) 25.96 45.65 40.51 14.27 24.70 11.14

GTVAD+BICS+PLDA2 (cont. 8) 30.79 57.45 52.19 10.80 29.36 17.40

6.2. System configuration

The features of the system were 20 ETSI standard MFCC

with short-time cepstral mean and variance normalization

(CMVN) with a sliding window of 3 seconds. Our solutions

to discriminate speech from music in TV shows are model

based. As using models trained on other datasets was not

allowed and the training set labels were not reliable to train

new models, we decided to use the VAD provided by the

organizers. On the development experiments, we used the

ground truth VAD (GTVAD); and on the eval. set, we used

the baseline VAD (BLVAD).

In the segmentation step, we divide each episode into

short single speaker segments We used our segmentation

based on BIC (BICS), and also the ones provided by the orga-

nizers, the ground truth segmentation (GTS) in development

and the baseline segmentation (BLS) in the evaluation.

We trained a UBM of 256 Gaussians and an i-vector ex-

tractor with i-vectors of dimension 100 on the training set.

We used the aligned metadata to define the segments where

we compute the i-vector posteriors in the expectation step of

the EM algorithm. In essence, for each short segment defined

in the metadata, we computed an i-vector.

We applied centering, whitening and length normalization

to the i-vectors [18]. The parameters needed for centering and

whitening were trained also on the training set. For this step,

speaker labels are not required.

We trained two VBPLDA models. The first PLDA

(PLDA1) was trained only on the development set. We

computed an i-vector for each segment defined in the ground

truth clustering and then, trained PLDA with ground truth

labels. We only selected the segments longer than 5 seconds

belonging to speakers with more than 4 segments. Thus, we

used 62 speakers with 1690 segments in total. The second

PLDA (PLDA2) was trained on both the development and

training sets. We used hidden speaker labels for the training

set; the label posteriors and the PLDA model posteriors where

obtained simultaneously as we iterate. We reduced the num-

ber of training segments by selecting segments longer than 5

seconds belonging to speakers with more than 8 segments–

according to baseline clustering in the metadata. Thus, we

kept 41995 segments. Then, we ran unsupervised VBPLDA

assuming several number of speakers and selected the model

that hypothesized 2500 speakers in the training set.

The speaker factor dimension was 50 for PLDA1 and 60

for PLDA2. Given the results in our previous works [12,

13], we put weak informative priors on the model parame-

ters based on the average total variance of the data s20. We

assumed that the speaker space variance is 15% of s20 and the

channel space has 85% of s20. Then, for α (prior of the inverse

eigenvalues), we placed a wide prior with mode 1/(0.15s20)
by setting aα = 2 and bα = 0.15s20. For W, we used a

Wishart prior with expectation 1/(0.85s20)I by setting ν0 =
102 and Ψ0 = 1/(0.85s20ν0)I. Note that, for the Wishart prior

to be proper, we need ν0 > d. We set τ0 = 10/M where M
is the number of hypothesized speakers.

7. RESULTS

Table 1 shows the Diarization Error Rate (DER) in the de-

velopment set for different diarization systems. DER can

be decomposed into missed speech, false alarm speech, and

speaker detection error. In this case, the first two are not sig-

nificant because we used the ground truth VAD (GTVAD)

in this experiment. The false alarm was 0% and the missed

speech was lower than 1% and it was due to undetected over-

lap between speakers. The first block of the table shows DER

in a not-linked setup, i.e., we do not consider the errors made

linking the speakers between episodes. Meanwhile, the sec-
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Table 2: DER(%) on evaluation set for different systems.

BLS stands for baseline segmentation, BICS denotes BIC

segmentation, BLVAD denotes baseline VAD, PLDA1 was

trained on the dev. set and PLDA2 was trained on the train

and dev. sets.

Total Show 6 Show 7

Not linked

BLS+PLDA1 (cont. 1) 44.67 48.57 38.34

BLVAD+BICS+PLDA1 (cont. 4) 42.77 46.65 36.48

BLS+PLDA2 (primary) 42.96 47.76 35.16

BLVAD+BICS+PLDA2 (cont. 8) 39.86 43.18 34.47

Best primary 40.20 44.59 33.07

Linked

BLS+PLDA1 (cont. 1) 53.69 56.41 49.28

BLVAD+BICS+PLDA1 (cont. 4) 51.21 54.42 46.00

BLS+PLDA2 (primary) 50.48 55.27 42.69

BLVAD+BICS+PLDA2 (cont. 8) 47.12 50.53 41.60

Best primary 47.46 51.92 40.21

ond block shows the results for the linked setup.

The first row of each block shows results for the case

where we cluster the i-vectors knowing the actual number of

speakers. Meanwhile in the second row, the VBPLDA de-

cides the number of speakers based on the variational lower

bound. We point out that, most of the times, it did not detect

the right number of speakers, however, it did not affect the

DER too much. The results of PLDA1 and PLDA2 were

close, PLDA2 was only about 1–2% absolute better than

PLDA1. However, considering that PLDA1 was trained on

the same data that we are evaluating, that could explain why

adding more data to the PLDA training did not improve the

DER. Using the BIC segmentation worsened around 5% ab-

solute w.r.t the ground truth segmentation; it worsened 12%

in the worst show but it improves 3.5% in Show 3. The DER

of the linked condition only worsened about 3% absolute

w.r.t to the not linked. The largest DER difference between

linked and not linked happened for Shows 2 and 4 that were

the ones with more episodes (6). As we process more and

more episodes, the total number of speakers grows, which

increases the chances of finding similar speakers and making

linking errors.

We observe a large disparity in the DER between shows.

One factor affecting performance is the quality of the speech.

The show with the higher DER is Show 1 (Dr. Who), where

speech is contaminated with background music and special

effects. On the contrary, the show with the lowest DER has

mostly clean speech. As commented above, another factor

is the number of speakers in the show. For example, despite

that Show 5 (UEFA championship) has crowd noise from the

stadium, its DER is lower than the DER of Show 4, which is

cleaner. However, Show 5 has 13 speakers per episode while

Show 4 has about 30 speakers per episode.

Table 2 shows the DER of our systems on the evaluation

data. In the last line, we include the result of the best pri-

mary system submitted by our competitors as reference. Our

primary and contrastive 1 submissions used the baseline clus-

tering provided by the organizers to create the initial segmen-

tation. Meanwhile, contrastive 4 and 8 used the baseline VAD

and our BIC segmentation. In this evaluation, we mainly fo-

cused on the clustering step. For this reason, we thought that

the baseline segmentation might be better than ours but we

were wrong. In fact, contrastive 8 slightly outperformed the

best primary rival.

The baseline VAD had 6.1% of missed speech and 4% of

false alarm speech. Thus, the speaker detection error is about

10% absolute lower than the DER in the table.

The eval. results are consistent with the dev. results.

PLDA2 outperformed PLDA1. The difference between both

is a bit larger than in the dev. set. The difference between

the linked and not linked condition is significant, about 7%

absolute. Once again, we think that this happens because of

the high number of episodes and, therefore, speakers in the

shows–186 and 300 speakers respectively.

8. CONCLUSIONS

We described the speaker diarization system that we proposed

for the Multi-Genre Broadcast (MGB) Challenge at ASRU

2015. We proposed a system based on the i-vector paradigm.

First, the system performs a segmentation step based on

BIC. The segmentation finds points where the speakers’

turns change and provides short segment containing a single

speaker. Then, we compute an i-vector per speech segment

and perform three clustering steps. A generative model based

on Bayesian PLDA clusters the speakers. In this model, the

speaker labels are latent variables that we optimize by vari-

ational Bayes iterations. The number of speakers in each

episode was decided by maximizing the variational lower

bound. After each clustering we merge some of the speech

segments and re-compute the corresponding i-vectors. The

i-vectors of the speakers of previous episodes were intro-

duced into the clustering algorithm to link speakers between

episodes.

We evaluated several system variants on the dev. and eval.

data. Our best system (contrastive 8) obtained DER=30.79%

on the dev. set and DER=47.12% on the eval. set. This system

slightly outperformed the best primary system in the evalua-

tion.

We observed that the quality of speech of the TV shows

greatly affects performance. Shows with speech overlapped

with music and special effects had much larger DER than

shows with clean speech. Also, shows with larger number

of episodes and speakers presented higher DER. We deduce

that having more speakers increases the chances of finding

speakers close in the i-vector space.
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