
IMPROVING THE INTERPRETABILITY OF DEEP NEURAL NETWORKS WITH
STIMULATED LEARNING

Shawn Tan, Khe Chai Sim

National University of Singapore

Mark Gales

University of Cambridge

ABSTRACT

Deep Neural Networks (DNNs) have demonstrated improve-
ments in acoustic modelling for automatic speech recognition.
However, they are often used as a black box, and not much is
understood about what each of the hidden layers does. We
seek to understand how the activations in the hidden layers
change with different input, and how we can leverage such
knowledge to modify the behaviour of the model. To this
end, we propose stimulated deep learning where stimuli are
introduced during the DNN training process to influence the
behaviour of the hidden units. Specifically, constraints are
applied so that the hidden units of each layer will exhibit
phone-dependent regional activities when arranged in a 2-
dimensional grid. We demonstrate that such constraints are
able to yield visible activation regions without compromis-
ing the classification of the network and suppressing the acti-
vations for a region affects the classification accuracy of the
corresponding phone more than the others.

Index Terms— Deep Neural Networks

1. INTRODUCTION

Deep Neural Network (DNN) acoustic modelling has achieved
state-of-the-art performance in comparison to the conven-
tional Gaussian Mixture Model (GMM) based systems. A
good summary of the techniques used and their results in
comparison to GMMs are reported in [1]. Unfortunately,
little is understood about what happens in the DNN and how
to update models after they have been trained.

DNNs have a generic multi-layer nonlinear structure that
makes it powerful and flexible. They are typically learned
in a data-driven manner to model complex mapping func-
tions. As such, DNNs are often regarded as a “black box”
and the lack of interpretability makes post-training modifica-
tions to the model difficult. For Automatic Speech Recogni-
tion (ASR), it is important to adapt the DNN-based acoustic
model to reduce the mismatch between the development and
deployment conditions. Typically, generic approaches such as
feature transformation [2] and feature augmentation [3] are
used for speaker and noise normalisation. However, these
methods focus on improving the classification performance,
not interpretability.

The approaches taken in analysing a trained neural net-
work can are usually done by examining (1) the weights in
each layer, typically by visualising them in the case of models
trained for computer vision tasks, or (2) analysing the activa-
tions as transformed representations of the input data. The
issues with current approaches is that they seldom focus on
being able to make modifications to the trained hidden layers
in order to yield different behaviour.

DNNs achieve their predictions through multiple levels
of linear transformations and non-linear activations. While
a single linear transformation may be interpreted by looking
at the weights from the input features to each of the output
classes, multiple layers with non-linear interactions at every
layer make understanding the DNN a difficult task.

In this paper, we use stimulated learning, where we inject
information at each of the hidden layers in order to (1) be able
to visualise these hidden layers after training, and (2) be able
to know with some certainty what a region of the hidden layer
is specialised in recognising.

In Section 2, we discuss the existing issues with interpret-
ing neural networks. In Section 3 we will elaborate what stim-
ulated learning is, and how it applies to visualising and inter-
preting neural networks. In Section 4 we explore the model
trained using the stimulated deep learning process and discuss
some of the properties of the model. Finally, in Section 5 we
give an overview of what we have learnt, and future directions
this work could move in.

2. NEURAL NETWORK INTERPRETATION

One of the common ways for inspecting the feature im-
portance for neural network models is Garson’s algorithm
[4], and was improved by [5]. The work proved useful for
analysing neural networks, but most of the works in which
it is used train neural networks with one single layer. It also
seems to be unable to account for the empirical range of the
neuron outputs, which we have found in DNNs to be an im-
portant factor – when using a sigmoid squashing function,
some neurons activate close to 0 or 1.

In the realm of computer vision, analysing neural network
weights has been another approach to interpreting neural net-
works. One of the ways is to treat the inputs as parameters and
optimise for a given hidden unit in the network [6, 7, 8]. One

617978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015

method typically used in interpreting convolutional networks
involves inverting the functions and transformations, using
signals from the forward propagation step to reconstruct the
features detected by a neuron [9]. This works for neural net-
works for vision since the input is immediately interpretable.
This procedure can be replicated with acoustic models, but
the resultant spectogram output is hard to interpret.

One paper used t-SNE [10] to visualise the different
spaces the intermediate layers of the network and how they
transform the original audio frame into the prediction [11].
This approach is useful in trying to get a measure of how the
non-linearities of DNNs help with making the input space
separable. While this is useful to get an idea of how the
feature space is transformed as it goes up the layers, there is
no direct way to affect the transformed space to modify the
behaviour of the neural network.

3. STIMULATED DEEP LEARNING

The aim of stimulated learning is to be able to augment the
training process of the neural network: hidden nodes are stim-
ulated at training time to respond to external attributes (stim-
uli). Some of the existing work fall under this category, like
using DNNs and i-vectors and dropout.

If we can allocate different regions of the hidden layer
for learning different concepts, we can then effect change on
these known regions of the network to modify its behaviour.
In this section, we describe our proposed methods for achiev-
ing this. All experiments are carried out using the TIMIT
dataset, using fmllr features with a context of 11. The DNN
has 6 hidden layers (L = 6), and its output is a probabil-
ity distribution across 1945 senones. In the following exper-
iments, we use neural networks with the same structure with
different training targets. All features are extracted using the
Kaldi toolkit [12], and the training of the DNNs referenced in
the following subsections are trained using the Theano library
[13].

Given an input frame x and a corresponding label y, a
DNN computes the hidden vectors h(l)

x ,

h
(0)
t = xt (1)

h
(l)
t = σ(W(l)h

(l−1)
t + b(l)), (2)

where
(σ(z))i =

1

1 + exp(−zi)
and a probability for the label P (y|x), by the following equa-
tions,

z = W(L+1)h
(L)
t + b(L+1) (3)

P (y|x) = exp(zy)∑
i exp(zi)

(4)

where l ∈ {1, . . . , L}.

(a) Unstimulated (b) Stimulated

Fig. 1. Unstimulated and stimulated network

We seek to understand and visualise h
(l)
t better, and in

the following subsections, we propose a way of introducing
stimuli in the training process in order to improve the hidden
layers’ interpretability.

3.1. Arbitrary Ordering Problem

An issue with the interpretation of the hidden layers in DNNs
is that the cells in those layers are arbitrarily ordered. This
presents two problems, (1) visualising these hidden layers
can give us no insights and (2) the lack of a spatial ordering
restricts us to manipulating these neurons as independent
items instead of groups of similarly functioning neurons.
One example of this is in Learning Hidden Unit Contribution
(LHUC) [14] where the number of parameters to be adapted
is equal to the number of neurons in the hidden layer. This is
because each neuron has to be treated independently as there
is no notion of similarity between nearby neurons. As an
example, Figure 1 shows the activations of 1024 hidden units,
arranged in a 32 by 32 grid, for two DNNs. The left plot cor-
responds to an unstimulated network where the hidden layer
activations appear to be random and difficult to visualise. The
right plot corresponds to a stimulated network where active
hidden units form a cluster that is much easier to visualise
and interpret.

Some applications in vision have imposed a spatial order-
ing to weights for their hidden layer neurons: feature detec-
tors which detect similar features are arranged closely on a 2-
dimensional grid [15]. This facilitates another level of pool-
ing later where the feature detectors are pooled for a higher
level of abstraction. This is achieved in part by adding an
additional regularisation term to the cost function in order to
reduce differences between groups of feature detectors.

Similarly, we can impose a penalty on the cost function to
prefer activations to be grouped in a region. We propose one
method for stimulating the nodes in the hidden layers of the
DNN, and impose that as a penalty in the optimisation cost.

First, we define some d-dimensional space in which each

618

neuron on layer l exists. This can be described by a (kl, d)
matrix S. We can then impose a penalty for a given d-
dimensional point s to ensure activations are higher in that
area. One method for achieving this is to impose a Gaussian
constraint centred around that point,

ĝ(i; s) = exp

(
−1

2
‖(Si)

> − s‖2
)

(5)

g(i; s) =
ĝ(i; s)∑kl

j ĝ(j; s)
(6)

g(·; s) defines a surface with which we want the hidden layer
contributions to conform to and Si is the ith row of S. We
penalise the contribution differences using the KL-divergence
cost,

D(h, s) =
∑
i

g(i; s) · log g(i; s)
h′i

, (7)

h′i =
hi∑
j hj

, (8)

These penalties are then added to our cost function depending
on how the constraint is to be applied. In our experiments,
we apply this additional cost to all layers, using the same S
throughout, which gives us similar regions activating across
layers when we feed in an input vector.

3.2. Imposing the penalty

In addition to the standard cross-entropy criteria for training,
we also stimulate the network using the ordering penalty over
the contribution metric we discussed in Section 2.

L =
1

T

T∑
t

(
− logP (yt|xt) + α

L∑
l

D(h
(l)
t , spt

)

)
where α is the weight given to the importance of the penalty
term, and spt is the 2-dimensional point for the corresponding
phoneme at time t.

This constraint jointly optimises: 1) for the neural net-
work to satisfy both the cross-entropy cost with the label yt,
and 2) the positioning stimuli for all layers as a secondary
constraint. All layers are stimulated with the same t-SNE
mapping (As seen in Figure 3).

The importance of the secondary constraint is controlled
by α. Figure 2 shows the final cross-entropy values against
the final KL-divergence values on the validation set. Higher
values of α results in lower values of the secondary constraint.
The cross-entropy objective initially improves, but then in-
creases in value with higher values of α. This is likely due to
the regularisation effect of the additional constraint, allowing
the model to generalise better. In the following analyses, we
use the model trained with α = 0.1 which achieves a PER
of 19.3%, while a standard model (α = 0.0) has a PER of
19.4%. This demonstrates that we are able to perform the
stimulated learning with no degradation in model accuracy.

Fig. 2. Trade-off between KL-divergence penalties and cross-
entropy costs on the validation set given different values of α.

Fig. 3. 2-dimensional mapping of phonemes.

3.3. Defining points for stimulation

We can define a point for each phoneme to centre activations
around, stimulating the hidden layer to light up around those
regions when a frame of that phoneme is given as input.

These points were obtained by applying t-SNE on the
average fmllr frame of each phoneme. The resulting 2-
dimensional points were then centred with the mean, and
then scaled to fit within the 32 by 32 boundary. Figure 3 is
the plot of the resulting points.

The use of t-SNE ensures that similar types of phonemes
are positioned close together in the 2-dimensional space that
we are reducing it down to. This is to allow for regions of acti-
vations to be more contiguous if there is a confusion between
two or more similar phonemes.

619

3.4. Arbitrary Scaling Problem

The hidden activations are sometimes referred to as ‘squash-
ing’ functions, and this is because they restrict the values to
within a range. In the case of the sigmoid function, this range
is (0,1). In practice, however, the range of the units do not
extend that full range of values. When analysing the hidden
layers, there are neurons that stay close to the extreme ends
of that range.

It is easy to dismiss these nodes as being useless, particu-
larly if they do not seem to vary much from input to input. Un-
fortunately, the contribution they make to the activations they
make at the next layer also depend on the outgoing weights
for that neuron. Conversely, we cannot conclude that a neu-
ron is important by looking at its outgoing weights, when the
range of its activations should also be a factor.

We propose a different metric that considers both weights
and activations. Given the l-th hidden layer h

(l)
t , we con-

sider the weights W(l+1), the outgoing connections from
h
(l)
t . Then the contributions to the next layer h(l)

t for an input
frame xt is defined as(

h
(l)
t

)
i
=
(
h
(l)
t

)
i
·
√∑

j

(
W(l+1)

)
ji

2
,

where (·)i is the i-th element of the vector. In other words,
we use the norm of the outgoing connections as the measure
contribution from one layer to the next. This gives us a way to
take both aspects of the problem into account, the empirical
range of the neuron’s activation, and the importance the next
layer’s weights assigns to it.

4. HIDDEN LAYER ANALYSIS

We can now inspect the hidden layers by forward propagat-
ing frames and plotting the hidden layers on a 32 by 32 pixel
image. Figure 6 shows the activations across all 6 layers in
the DNN at particular points during the utterance. In particu-
lar, we have highlighted 5 different parts of the utterance and
shown the activation plots for all 6 layers of the DNN.

It is clear that the constraints have achieved the goal of
concentrating activations close together. The phoneme sil
is the best phoneme when ranked in ascending KL-divergence
cost order, and this can also be seen in the plots as cleaner and
smoother activations. The level of spurious activations in the
layer also centre around the t-SNE projected point generally
decreases until the fourth layer, and then increases for the fifth
and the sixth. The KL-divergence values per layer also shows
a similar trend. The vowel phonemes are in the top right hand
corner of the plot, and these seem to visually have the largest
spread. In the Figure 6, this phenomenon can be seen for the
plots in ow and iy.

When comparing the plots for v and s with the positions
in Figure 3, we can also observe the sensible mistakes that the

Fig. 5. Plot of the relative accuracy reduction when muting
out regions of the hidden layers

network makes. In the initial layers, there is a spread from the
s point toward that of the nearby z point. The v activations
also has a spread towards the th and f sounds.

4.1. Modifying behaviour using known regions

We now know regions in the hidden layers that correspond to
phonemes. We mute these regions to introduce a handicap
to the model and observe the classification accuracy on the
development set of TIMIT.

We do this by multiplying a Gaussian mask with the hid-
den layer, redefining h

(l)
t as,

(h
(l)
t)i := (1− ĝ(i; sp)) · (h(l)

t)i

This essentially masks away the region that is expected to ac-
tivate for phoneme p. We then forward propagate using this
modified version of the neural network and observe the accu-
racy for the senones associated with each phoneme.

Figure 5 shows the relative accuracy across each phoneme.
The rows represent the phoneme regions that were muted
during testing, and the columns represent the accuracy of the
phonemes in relation to the default (un-muted) accuracy for
that phoneme. The relative difference seen in the diagonal of
the plot implies that the regions being muted more strongly
affect the corresponding phoneme that we are deciding to
handicap.

This suggests that the stimulation we impose during the
training do not only give a more structured visual representa-
tion of the hidden activations, but also cause the DNN to be
learnt in a way that common concepts are grouped in the hid-
den layers, to the extent that this can be manipulated at test
time to cause changes in the behaviour of the DNN.

620

Fig. 4. Hidden layer plots across points in an utterance.

621

4.2. Training with contextual information

We wanted to know if the network could generalise to stimuli
that was unseen in the training data. We trained another net-
work with contextual information: the left and right context
phoneme of the current phoneme.

We used a mixture of Gaussians as above, with the sur-
faces normalised to 1. The same KL-divergence cost is used
for each layer, with α = 0.1. We attain a model with a PER of
19.2%, demonstrating again that we are able to do this with-
out degradation of the original model.

Figure 6 shows from left to right plots of hidden layer
activations for (a) seen contexts and (b) unseen contexts. In
training this model, we find that the same trend, with KL-
divergence costs decreasing in the first four layers and then
increasing in the fifth and sixth does not hold here. In ad-
dition, the unseen contexts get confused with more common
contexts that are usually seen, and do not generalise like we
would expect. Visually, we see that the activations are more
‘messy’ in the first layer, and then clean up later on in the
higher layers. This suggests that the model does some ab-
straction as it goes up the layers that is useful in determining
what the context of the window of audio frames are.

5. SUMMARY AND FUTURE WORK

In this paper, we have addressed two main problems when
trying to analyse the hidden layers of DNNs, and proposed a
way of stimulating the training of DNNs in order to address
these problems.

We demonstrate that the stimuli produce the intended
results of creating activities in the hidden layers that con-
form to the constraints we introduce. Setting low α values
for the constraint also help to improve the decoding perfor-
mance of the acoustic model. Additionally, we show that we
can use this knowledge of where the activations are for each
phoneme to introduce a phoneme specific handicap. These
handicaps were then shown to specifically target only the af-
fected phoneme, which demonstrates the capability to modify
the behaviour of these stimulated DNNs. We were however
unable to use contextual information as stimuli and have the
hidden layers generalise over contexts that were unseen in the
training data.

The long-term goal of this work is to (1) better under-
stand, and improve the interpretability of neural networks
through different training methods, and (2) to be able to
leverage that to modify and improve trained networks. Our
work has demonstrated that it is possible to stimulate the hid-
den layers during the training process in order to gain a more
interpretable representation, but future work will include ap-
plying these techniques for post-training modifications to the
network, such as speaker adaptation or noise adaptation.

6. ACKNOWLEDGEMENTS

This research was supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 2 (Official Project No:
MOE2014-T2-1-068).

7. REFERENCES

[1] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups,” Signal Processing Magazine, IEEE,
vol. 29, no. 6, pp. 82–97, 2012.

[2] Frank Seide, Gang Li, Xie Chen, and Dong Yu, “Feature
engineering in context-dependent deep neural networks
for conversational speech transcription,” in Proceedings
of the IEEE Workshop on Automatic Speech Recognition
and Understanding, 2011, pp. 24–29.

[3] A. Senior and I. L. Moreno, “Improving dnn speaker
independence with i-vector inputs,” in Proceedings of
the IEEE International Conference on Acoustics, Speech
and Signal Processing, 2014.

[4] G. David Garson, “Interpreting neural-network connec-
tion weights,” AI Expert, vol. 6, no. 4, pp. 46–51, Apr.
1991.

[5] ATC Goh, “Back-propagation neural networks for mod-
eling complex systems,” Artificial Intelligence in Engi-
neering, vol. 9, no. 3, pp. 143–151, 1995.

[6] Anh Nguyen, Jason Yosinski, and Jeff Clune, “Deep
neural networks are easily fooled: High confidence pre-
dictions for unrecognizable images,” arXiv preprint
arXiv:1412.1897, 2014.

[7] Aravindh Mahendran and Andrea Vedaldi, “Under-
standing deep image representations by inverting them,”
arXiv preprint arXiv:1412.0035, 2014.

[8] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man, “Deep inside convolutional networks: Visualising
image classification models and saliency maps,” arXiv
preprint arXiv:1312.6034, 2013.

[9] Matthew D Zeiler and Rob Fergus, “Visualizing and
understanding convolutional networks,” in Computer
Vision–ECCV 2014, pp. 818–833. Springer, 2014.

[10] Laurens Van der Maaten and Geoffrey Hinton, “Visu-
alizing data using t-sne,” Journal of Machine Learning
Research, vol. 9, no. 2579-2605, pp. 85, 2008.

622

(a) Seen contexts

(a) Unseen contexts

Fig. 6. Example of hidden layer activations for a seen context and an unseen context

[11] Abdel Rahman Mohamed, Geoffrey Hinton, and Gerald
Penn, “Understanding how deep belief networks per-
form acoustic modelling,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, 2012.

[12] D. Povey, a. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely, “The kaldi speech recognition toolkit,”
in Proceedings of the IEEE Workshop on Automatic
Speech Recognition and Understanding, 2011, pp. 1–4.

[13] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio, “Theano: A cpu and gpu math compiler in python,”
in Proc. 9th Python in Science Conf, 2010, pp. 1–7.

[14] Pawel Swietojanski and Steve Renals, “Learning hidden
unit contributions for unsupervised speaker adaptation
of neural network acoustic models,” in Spoken Lan-
guage Technology Workshop (SLT), 2014 IEEE. IEEE,
2014, pp. 171–176.

[15] Koray Kavukcuoglu, Marc Aurelio Ranzato, Rob Fer-
gus, and Yann Le-Cun, “Learning invariant features
through topographic filter maps,” in Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Con-
ference on. IEEE, 2009, pp. 1605–1612.

623

