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ABSTRACT

When building a state-of-the-art speech recognition system, the la-
borious effort required by human experts in tuning numerous pa-
rameters remains a prominent obstacle. The goal of this paper is to
automate the process. We propose to tune DNN-HMM based large
vocabulary speech recognition systems using the covariance ma-
trix adaptation evolution strategy (CMA-ES) with a multi-objective
Pareto optimization. This optimizes systems to achieve both high-
accuracy and compact model size. An additional advantage of our
approach is that it is efficiently parallelizable and easily adapted to
cloud computing services. We performed experiments on the Corpus
of Spontaneous Japanese (CSJ) using the TSUBAME 2.5 supercom-
puter. Compared with a strong manually tuned configuration bor-
rowed from a similar system, our approach automatically discovered
systems with lower WER by 0.48%, and systems with 59% smaller
model size while keeping WER constant. The optimized training
script is released in the Kaldi speech recognition toolkit as the first
publicly available recipe for Japanese large vocabulary speech recog-
nition.

Index Terms— large vocabulary speech recognition, evolu-
tion strategy, deep neural network, multi-objective optimization,
Japanese spontaneous speech recognition

1. INTRODUCTION

Automatic speech recognition (ASR) systems consist of several sta-
tistical models that efficiently represent acoustic and linguistic pat-
terns in speech [1]. The parameters of these models, such as the
connection weights of a deep neural network (DNN) [2], the transi-
tion probabilities of a hidden Markov model (HMM) [3], and the arc
weights of an weighted finite state transducer (WFST) [4], are esti-
mated from large amounts of training data. Additionally, there are
various meta-parameters, including model topology (the numbers of
layers and hidden units), training configuration (e.g., the learning
rate and the maximum number of iterations), and system organiza-
tion (e.g., the choice of features). Meta-parameter tuning is essen-
tial for building state-of-the-art systems, but as a consequence of the
increased complexity of recent ASR techniques, this process is be-
coming increasingly difficult and time-consuming even for human
experts. Thus there is a strong demand to automate the tuning pro-
cess using computers.

If we consider system performance as a function of the config-
uration of meta-parameters, then tuning can be formalized as an op-
timization problem. The function is highly complex and the ana-
lytic solution is infeasible. A grid search is also not tractable be-
cause the search space is exponential with respect to the number

of meta-parameters. Solutions to this type of black-box optimiza-
tion problem include evolutionary algorithms (e.g., genetic algo-
rithm (GA) [5], evolution strategy (ES) [6]) and Bayesian optimiza-
tion [7, 8]. GA imitates a biological evolutionary process that is
repeated for generations in which a configuration corresponds to a
gene and a system corresponds to an individual. A set of systems
with different configurations are grown and evaluated, and a set of
next-generation configurations is made from the current generation
with the selection pressure based on fitness. ES is similar to GA
but uses a real valued vector as a gene. Covariance matrix adapta-
tion evolution strategy (CMA-ES) [9, 10, 11] is a type of ES that
represents gene distribution using a multivariate Gaussian distribu-
tion. CMA-ES has demonstrated great performance in performing
various tasks in a benchmarking workshop of black-box optimiza-
tion [12]. Bayesian optimization defines a prior probability distribu-
tion of the black-box function and sequentially updates its posterior
based on the evaluation results from the individuals investigated up
to that point. The posterior distribution is used to define an acquisi-
tion function that determines the next configuration to try. Gaussian
process [13] is a popular choice to represent the distribution over the
function.

Notably, several researchers have applied GA to HMM acoustic
modeling [14, 15, 16]. Previously, we have used CMA-ES to opti-
mize the meta-parameters of a medium-size vocabulary DNN ASR
system [17]. We have also applied CMA-ES and GA to optimize di-
rected acyclic graph (DAG) based DNNs used as feature extractors
for a keyword spotting system [18], where we found that CMA-ES
and GA produced a similar final performance given sufficient gen-
erations, but CMA-ES was superior with a small number of gener-
ations. Promising results have been reported in these studies, but
none of these optimization approaches have been applied to up-to-
date large vocabulary speech recognition systems. In this paper, we
scale up the CMA-ES approach to automated system building for
complex large vocabulary DNN-HMM based speech recognition.

In the previous experiment that used CMA-ES and GA to op-
timize the DAG based DNN structure for keyword detection per-
formance, we found that there were cases in which the model size
became extremely large [18]. Because model size affects memory
efficiency and processing speed not only for training but also for de-
coding, it must be controlled. In this case, we need a multi-objective
optimization framework that optimizes recognition performance and
model size jointly. Although multi-objective optimization is typi-
cally performed by using an weighted combination of individual ob-
jective functions, our goal is to automate the building process while
avoiding the introduction of an additional weight parameter. Instead,
we apply Pareto optimality [19, 20, 21], which can efficiently rank
multi-objective scores without setting weights for weighted combi-
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nation.
In the experiments, the systems are built using a massively par-

allel computing platform. The process is highly automated based on
the multi-objective CMA-ES and implemented based on the Kaldi
toolkit [22]. Compared with a strong manually tuned configuration
borrowed from a similar system, our approach automatically discov-
ered systems with lower WER by 0.48%, and systems with 59%
smaller model size while keeping WER constant. The optimized
training configuration is released in the Kaldi toolkit as a publicly
available recipe for Japanese large vocabulary speech recognition 1.

The rest of the paper is organized as follows. In section 2,
the black-box optimization algorithms are explained by focusing
on CMA-ES and multi-objective optimization. Experimental con-
ditions are described in Section 3, and the results are shown in Sec-
tion 4. Finally, conclusions and future works are offered in Section 5.

2. FORMULATION

Let us represent an evaluation function y = f(x) as the accuracy
(or some other measure of correctness, such as negative sign of error
counts) of an ASR system built from meta-parameters x. The pro-
cess of finding the optimal tuning parameter x∗ to maximize ASR
accuracy can be formulated as the following optimization problem:

x∗ = argmax
x

f(x). (1)

As ASR systems are extremely complex, there is no analytical form
for the solution. We must address this optimization problem without
assuming specific knowledge for f , i.e., by considering f as a black
box. Another important aspect of this problem is that evaluating
the function value f(x) is very expensive because training a large
vocabulary model and computing its development set accuracy can
take considerable time. The key point here is thus for the black box
optimization to generate appropriate hypotheses x̂ to find the best x∗

in the smallest number of ASR training and evaluation steps (f(x))
as possible.

2.1. CMA Evolution Strategy

CMA-ES iteratively estimates the parameters of a sample distribu-
tion for x such that the distribution is concentrated in a region with
high values of f(x). Hypotheses are sampled from a multivariate
Gaussian distribution:

x̂ ∼ N (x|θ̂) s.t. θ̂ = argmax
θ

∫
f(x)N (x|θ)dx︸ ︷︷ ︸

≜E[f(x)|θ]

.
(2)

CMA-ES iteratively re-estimates the mean vector and covariance
matrix (θ) so as to optimize the expected value of f(x) under the
distribution. As the concrete functional form of f is unknown, it is
difficult to address Eq. (2) analytically. To solve this problem, a nat-
ural gradient method [23] is used by taking a gradient of E[f(x)|θ]
with respect to θ. The expectation in the natural gradient can be
approximately computed by using Monte Carlo sampling with the
function evaluation yk = f(xk):

∇θE[f(x)|θ] ≈
1

K

K∑
k=1

ykF
−1
θ ∇θ logN (xk|θ), (3)

1http://kaldi.sourceforge.net/index.html

where xk is sampled from the previously estimated distribution
N (x|θ̂n−1), and F is the Fisher information matrix. As CMA-ES
uses a multivariate Gaussian distribution N (x|θ) with a mean vector
µ and a covariance matrix Σ, we can obtain the analytical forms of
µ̂n and Σ̂n by substituting the concrete Gaussian form into Eq. (3),
leading to:

µ̂n = µ̂n−1 + ϵµ
∑K

k=1 w(yk)(xk − µ̂n−1)

Σ̂n = Σ̂n−1 + ϵΣ
∑K

k=1 w(yk)

·
(
(xk − µ̂n−1)(xk − µ̂n−1)

⊺ − Σ̂n−1

) (4)

where ⊺ is the matrix transpose. Note that, as in [9], yk in Eq. (3) is
approximated in Eq. (4) as a weight function w(yk), defined as:

w(yk) =
max{0, log(K/2 + 1)− log(R(yk))}∑K

k′=1 max{0, log(K/2 + 1)− log(R(yk′))}
− 1

K
,

(5)
where R(yk) is a ranking function that returns the descending order
of yk among y1:K (i.e., R(yk) = 1 for the highest yk, R(yk) = K
for the smallest yk, etc.). This equation only considers the order of y,
which makes the updates less sensitive to evaluation measurements
(e.g., to prevent from the different results using word accuracies and
the negative sign of error counts).

2.2. Multi-objective Optimization

In addition to high accuracy, objectives such as small model size
and fast run-time are also important in practice. Without loss
of generalization, assume that we wish to maximize J objectives
F (x) ≜ [f1(x), f2(x), . . . , fJ(x)] with respect to x jointly. As
objectives may conflict, we adopt a notion of optimality known as
Pareto optimality [24]: First, if fj(xk) ≥ fj(xk′) ∀ j = 1, .., J
and fj(xk) > fj(xk′) for at least one objective j, then we say that
xk dominates xk′ and write F (xk) ▷ F (xk′). Given a set of candi-
date solutions, xk is Pareto-optimal iff no other xk′ exists such that
F (xk) ▷ F (xk′).

Pareto-optimality formalizes the intuition that a solution is good
if no other solution outperforms (dominates) it in all objectives.
Given a set of candidates, there are generally multiple Pareto-
optimal solutions; this is known as the Pareto frontier. Note that an
alternative approach is to combine multiple objectives into a single
objective via an weighted linear combination:

∑
j βjfj(x), where∑

j βj = 1 and βj > 0. The advantage of the Pareto definition is
that weights βj need not be specified and it is more general, i.e., the
optimal solution obtained by any setting of βj is guaranteed to be
included in the Pareto frontier.

CMA-ES can be extended to optimize multiple objectives by
modifying the rank function R(yk) used in Eq. (5). Given a set of
solutions {xk}, we first assign rank = 1 to those on the Pareto fron-
tier. Then, we exclude these rank 1 solutions and compute the Pareto
frontier again for the remaining solutions, assigning them rank 2.
This process is iterated until no {xk} remain, and we obtain a rank-
ing of all solutions according to multiple objectives in the end. The
rest of CMA-ES remains unchanged; by this modification, future
generations are drawn to optimize multiple objectives rather than a
single objective. With some bookkeeping, this ranking can be com-
puted efficiently in O(J ·K2) [25].

In our experiments, we jointly optimize for low word error rate
and small model size. To prevent unreasonably high error rate solu-
tions (that might otherwise have good model size) to appear on the
Pareto frontier, we need an additional heuristic. Solutions with an
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Algorithm 1 Multi-objective CMA-ES

1: Initialization of µ̂0 and Σ̂0

2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk from N (x|µ̂n−1, Σ̂n−1)

5: Evaluate F (xk) ≜ [f1(xk), f2(xk), . . . , fJ(xk)]
6: end for
7: Rank {F (xk)}Kk=1 according to Pareto optimality
8: Update µ̂n and Σ̂n

9: end for
10: return subset of solutions {x, F (x)} that lie on the Pareto front

(rank 1) of all stored N ×K samples

error rate above a manually set threshold are penalized to not appear
as rank 1.

Algorithm 1 summarizes the CMA-ES optimization procedure
with Pareto optimality, which is used to rank the multi objectives
F (xk). The rank obtained is used to update the mean vector and
covariance matrix of the CMA-ES. The CMA-ES gradually samples
neighboring tuning parameters from the initial values, and finally
provides a subset of solutions, {x, F (x)}, that lie on the Pareto front
(rank 1) of all stored N ×K samples. Note that, because CMA-ES
is a gradient method, initial values must be set. As CMA-ES as-
sumes a multivariate Gaussian for x, it is originally suitable for tun-
ing parameters that take continuous values and requires some extra
discretization for discrete value optimization. Finally, the evaluation
of F (xk) can be performed independently for each k. Therefore, it
is easily adapted to parallel computing environments – such as cloud
computing services – for shorter turnaround time. The number of
samples, K, is automatically determined from the number of dimen-
sions of x [9] or we can set it manually by considering computer
resources.

2.3. Bayesian Optimization

While CMA-ES involves a distribution over the tuning parameter x
and takes the expectation over x, Bayesian optimization uses a prob-
abilistic model of the output y and considers the expectation defined
over y called an acquisition function. Several acquisition functions
have been proposed [26]. Here we use expected improvement, which
is suggested as a practical choice [8]. The improvement is defined
as max {0, y − y∗

m−1} where y∗
m−1 = max1≤m′≤m−1 ym′ is the

best score among m − 1 previous scores. Bayesian optimization
then performs a deterministic search for the next candidate x̂m by
maximizing the expected improvement over y, aEI(xm):

x̂m = argmax
xm

∫
max{0, y − y∗

m−1}p(y|D1:m−1,xm)dy︸ ︷︷ ︸
≜aEI (xm)

(6)

where p (y|D1:m−1,xm) is a predictive distribution of y given ob-
served data D1:m−1 ≜ {x1:m−1, y1:m−1} and xm, modeled as a
Gaussian process. Eq. (6) selects xm that is likely to lead to a high
score ym with high confidence given the predictive distribution.

3. EXPERIMENTAL SETUP

Experiments were performed using the Kaldi speech recognition
toolkit with speech data from the Corpus of Spontaneous Japanese

Fig. 1. Structure of the initial DNN.

(CSJ) [27]. We ran two separate experiments with training sets hav-
ing different amount of data: one consists of 240 hours of academic
presentations, whereas the other is a 100-hour subset. A common de-
velopment set consisting of 10 academic presentations was used for
performance computation in CMA-ES and Bayesian optimization.
The official evaluation set defined in CSJ, which has 10 academic
presentations that total 110 minutes, was used as the evaluation set.

Acoustic models were trained by first making a GMM-HMM
by maximum likelihood estimation and then building a DNN-HMM
by pre-training and fine-tuning using alignments generated by the
GMM-HMM. For the performance evaluation of the system, the
DNN-HMM was used as the final model. The language model was
a 3-gram model trained on CSJ with academic and other types of
presentations, which amounted 7.5 million words in total. The vo-
cabulary size was 72k. Speech recognition was performed using the
openfst WFST decoder [28]. As an initial configuration, we used
a manually optimized Kaldi recipe for the Switchboard corpus (i.e.
egs/swbd/s5b). We chose the recipe because the task was similar
while the language was different, and because it was well tuned and
publicly available.

In the evolution experiments, feature types, DNN structures, and
learning parameters were optimized. These meta-parameters were
implemented as configuration variables for training scripts. The first
and second columns of Table 1 describe these variables. We spec-
ify three base feature types (feat type) for GMM-HMM and DNN-
HMM models: mel-frequency cepstrum coefficients (MFCC) [29],
perceptual linear prediction (PLP) [30], and filter bank (FBANK).
The dimensions of these features were 13, 13, and 36, respectively.
The GMM-HMMs were trained with specified features and their
delta and delta-delta. The DNN-HMMs were trained with the fea-
tures with delta and delta-delta that were first transformed by fM-
LLR and then expanded to # splice pre and post context frames
before inputting to the first DNN layer. Other settings were the
same as those used in the Kaldi recipe. Because CMA-ES uses
genes represented as real-valued vectors, mappings from a real scalar
value to a required type are necessary, depending on the parame-
ters. As for the mapping, we used ceil(10x) for positives integers
(e.g. splice), 10x for positive real values (e.g. learning rates), and
mod (⌊ceil(abs(x) ∗ 3)⌋, 3) for a multiple choice (feature type).
The third column of the tables presents the initial meta-parameter
configurations that were also used as baselines. Figure 1 shows the
structure of the initial DNN.

The system training and evaluation were performed using the
TSUBAME 2.5 supercomputer 2. Population sizes for CMA-ES

2http://www.gsic.titech.ac.jp/en
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Table 1. Meta-parameters subject for optimization and their automatically tuned results for the system using 240-hour training data. CMA-ES
with Pareto was used for the automatic tuning.

Name of meta-parameters Description baseline Values obtained by evolution using 240h training data
gen1 gen2 gen3 gen4 gen5 gen6

feat type MFCC, FBANK, or PLP MFCC MFCC MFCC MFCC MFCC MFCC MFCC
splice segment length for DNN 5 6 9 10 17 21 18
nn depth number of hidden layers 6 7 6 6 6 5 7
hid dim units per layer 2048 1755 1907 2575 1905 2904 3304
param stddev first init parameters in 1st RBM 1.0E-1 1.1E-1 1.3E-1 1.1E-1 1.2E-1 0.7E-1 0.6E-1
param stddev init parameters in other RBMs 1.0E-1 1.0E-1 1.3E-1 1.0E-1 2.3E-1 1.9E-1 1.6E-1
rbm lrate RBM learning rate 4.0E-1 5.2E-1 5.7E-1 4.1E-1 4.7E-1 3.6E-1 3.6E-1
rbm lrate low lower RBM learning rate 1.0E-2 1.3E-2 1.1E-2 0.8E-2 0.7E-2 0.8E-2 1.1E-2
rbm l2penalty RBM Lasso regularization 2.0E-4 2.1E-4 2.2E-4 1.2E-4 1.6E-4 1.9E-4 1.5E-4
learn rate learning rate for fine tuning 8.0E-3 7.3E-3 6.5E-3 7.8E-3 4.4E-3 5.3E-3 3.7E-3
momentum momentum for fine tuning 1.0E-5 0.9E-5 0.9E-5 0.4E-5 0.9E-5 0.4E-5 0.7E-5

Table 2. Word error rate and DNN size of base systems.
Training data Dev set Eval set
MFCC 100h 14.4 13.1
PLP 100h 14.5 13.1
FBANK 100h 15.1 13.8
MFCC 240h 13.5 12.5
PLP 240h 13.6 12.5
FBANK 240h 14.1 13.0

were 20 for the 100-hour training set and 44 for the 240-hour train-
ing set. Multiple NVIDIA K20X GPGPUs were used in parallel
through the message-passing interface (MPI). For the CMA-ES op-
timization, we used the Python version of the implementation 3. For
the Bayesian optimization, we used the Spearmint package 4. As
the initial condition of the Bayesian optimization, we specified the
range of the meta-parameters between 20% and 600% of the baseline
configuration. The MFCC based baseline system with the 240-hour
training set took 12 hours for the RBM pre-training and 70 hours
for fine-tuning. The maximum word error rate thresholds for multi-
objective optimization were set to include the top 1/2 and 1/3 of the
populations at each generation, respectively, for the trainings using
the 100 and 240-hour data sets.

4. RESULTS

Table 2 shows word error rates and DNN sizes for systems with the
default configuration using the 100- and 240-hour training sets with
one of the three types of features. Among the features, MFCC was
the default in the Switchboard recipe, and it yielded the lowest word
error rates for the development set for both of the training sets. The
corresponding word error rates for the evaluation set were 13.1% and
12.5% for the 100- and 240-hour training sets, respectively.

Figure 2 shows a scatter plot of the CMA-ES based single-
objective optimization using the 100-hour training data. The evo-
lution was performed so as to minimize the development set word
error rate. The horizontal axis is the DNN size and the vertical axis
is the word error rate of the evaluation set. The initial mean vector of
the multivariate Gaussian for CMA-ES was set equal to the baseline
settings. The baseline marked on the figure is the MFCC based sys-

3https://www.lri.fr/˜hansen/cmaes_inmatlab.html
4https://github.com/JasperSnoek/spearmint
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Fig. 2. CMA-ES based optimization when using 100-hour training
data. The horizontal axis is the DNN size and the vertical axis is the
word error rate of the evaluation set. Results of n-th generation are
denoted as “gen n”.

tem. Ideally, we want systems on the lower-left side of the plot. The
distribution is shown to shift with the progress of generations toward
lower word error rates and lower DNN file sizes from the baseline.
Similarly, Figure 3 shows the results of the multi-objective optimiza-
tion using CMA-ES with the Pareto rank. Using the Pareto rank,
systems were ranked based on the development set word error rate
and the DNN model size. The result is similar to that produced using
CMA-ES, but the distribution is oriented more to the lower-left side
of the plot. Figure 4 presents the results using the Bayesian optimiza-
tion for the optimization. In this case, the initial configuration is not
directly specified but ranges of the meta-parameters are specified.
We found that specifying a proper range was actually not straight-
forward and required knowledge of the problem. On one hand, if the
ranges are too wide, the initial samples are coarsely distributed in the
space, and it is likely that the systems have lower performance. On
the other hand, if the ranges are too narrow, it is likely that the op-
timal configuration is not included in the search space. As a result,
the improvement with the Bayesian optimization was smaller than
that with the CMA-ES. Careful setting of the ranges might solve the
problem but would again assume expert human knowledge.

Figures 5 and 6 are plots of the DNN model size and word error
rate of the best system in each generation. Figure 5 is the result of
the development set and Figure 6 is the result of the evaluation set. In
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Fig. 3. CMA-ES and Pareto based multi-objective optimization
when 100 hour training data was used. The horizontal axis is the
DNN size and the vertical axis is the word error rate of evaluation
set. Results of n-th generation are denoted as “gen n”.
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Fig. 4. Results when the Bayesian optimization was used with 100-
hour training data. The horizontal axis is the DNN size and the ver-
tical axis is the word error rate of the evaluation set. Results of n-th
generation are denoted as “gen n”.

both cases, the best system was selected based on the development
set word error rate among the systems from the initial to the cur-
rent generation. The evaluation set word error rate obtained by the
best system after the 7th iterations was 12.7%, both when CMA-ES
was used alone and when CMA-ES was used with Pareto. How-
ever, a smaller DNN model size was obtained by using CMA-ES
with Pareto. The DNN model size when CMA-ES was used alone
was 225.5 Mbytes, whereas it was 202.4 Mbytes when CMA-ES was
used with Pareto, which was 89.8% of the former. The selected fea-
ture type was all MFCC except for the seventh generation, which
was PLP.

Figure 7 shows a plot of the CMA-ES with Pareto based opti-
mization using the 240-hour training data. The horizontal axis is the
DNN model size and the vertical axis is the development set word
error rate. Due to the increased data size and time constraints, a time
limit was introduced for the training at each generation. If a sys-
tem did not finish the training within four days, it was interrupted
and the last model in the iterative back-propagation training at that
timing was used as the final model. Depending on the generation,
approximately 70% of the individuals completed the training within
the limit. The figure shows that the distributions shifted toward lower
word error rates and lower DNN file sizes with the progress of gen-

13.9

14.0

14.1

14.2

14.3

14.4

14.5

100 150 200 250

W
ER

 [ 
%

 ]

DNN size [ MB ]

CMA-ES

CMA-ES + Pareto

baseline

gen2,3

gen4,5,6 gen7

gen1

gen2

gen3,4,5,6,7

Fig. 5. The DNN model size and the development set word error
rate of the best system. At each generation, the best system was
selected that yielded the lowest word error rate among the initial to
the current generation.
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Fig. 6. The DNN model size and the evaluation set word error rate of
the best system selected based on development set. At each gener-
ation, the best system was selected that yielded the lowest develop-
ment set word error rate among the initial to the current generation.

erations.
Figure 8 shows the word error rates of the best system selected

within each generation based on the development set word error rate
when the 240-hour training set was used. Although the development
set error rate monotonically decreased with the number of the gener-
ation, the evaluation set error rate appeared to be saturated after the
fourth generation, which might have resulted from over fitting to the
development set because we used the same development set for all
the generations. The lowest word error rate of the development set
was obtained at the 6th generation. The corresponding evaluation
set error rate was 12.1%. The difference in the evaluation set word
error rates between the baseline (12.5%) and the optimized system
(12.1%) was 0.48% and this was statistically significant under the
MAPSSWE significance test [31]. The relative word error reduction
was 3.8%.

If desired, we can choose a system from the Pareto frontier that
best matches to the required balance of the word error rate and the
model size. Figure 9 shows the Pareto frontier derived from the re-
sults from the initial to the 6th generation using the 240-hour training
data. The figure thus shows that if we choose a system with approx-
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Fig. 7. The DNN model size and the development set word error rate
when the 240-hour training set was used. Results of n-th generation
are denoted as “gen n”.
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Fig. 8. The development and evaluation set word error rates of the
best system at each generation when the 240h training set was used.
In the figure “dev” and “eval” indicate the results of the development
and the evaluation sets, respectively.

imately the same word error rate as the initial model, we can obtain
a reduced model size that is only 41% of the baseline. That is, the
model size was reduced by 59%. The decoding time of the evalua-
tion set by the reduced model was 15.9 minutes, which was 85.4%
of 18.7 minutes by the baseline. Similarly, the training time of the
reduce model was 54.3% of the baseline model.

Columns 4 to 9 of the Table 1 show meta-parameter configura-
tions obtained as the result of evolution using the 240-hour training
set. These are the configurations that yielded the lowest develop-
ment set word error rates at each generation. When we analyze the
obtained meta-parameters, it is notable that MFCC was selected at
all the generations. There were systems using PLP or FBANK in
the population, but they did not produce the best result. Although
the changes were not monotonic for most of the meta-parameters,
we found that splice size was increased more than three times from
the initial model. We also note that the learning rate decreased more
than half from the initial condition.

As a supplementary experiment, sequential training [32] was
performed using the best model at the 4th generation as an initial
model. As the sequential training is computationally intensive, it
took an extra 7 days. After the training, the word error rate was fur-
ther reduced and 10.9% was obtained for the evaluation set. This
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Fig. 9. Pareto frontier derived from the results from the initial to
the 6th generation using 240-hour training data. In the figure “dev”
and “eval” indicate the results of the development and the evaluation
sets, respectively.

was lower than the word error rate of 11.2% obtained with sequen-
tial training using the baseline as the initial model. The difference
was statistically significant, which affirms the effectiveness of the
proposed method.

5. CONCLUSIONS

To automate the process of building a state-of-the-art large vocabu-
lary speech recognition systems, we propose to use covariance ma-
trix adaptation evolution strategy (CMA-ES). Further, we applied the
combination of CMA-ES and Pareto rank to perform multi-objective
optimization that considered both word error rate and model size
while minimizing the tuning factors that require human experts.
The proposed automation method was applied to build DNN-HMM
based systems using data from the Corpus of Spontaneous Japanese
(CSJ). In the experiments using 100-hour training set, CMA-ES,
CMA-ES with Pareto and Bayesian optimization were compared.
Both of the CMA-ES methods yielded lower word error rates than
the baseline. By using CMA-ES with Pareto to jointly minimize the
word error rate and the DNN model size, a system was obtained that
has a similar word error rate with a smaller DNN model size com-
pared to using only CMA-ES with the word error rate as its single
objective. CMA-ES was more convenient to optimize speech recog-
nition systems than Bayesian optimization, which requires ranges of
the meta-parameters to be specified. For the 240-hour training set,
a 3.8% relative word error rate reduction from the baseline was ob-
tained. If a system was chosen that had approximately the same word
error rate as the initial model instead of minimizing the word error
rate, a reduced model size was obtained that was only 41% of the
baseline. Future work includes applying the proposed method for
more complex systems and improving the efficiency of the evolution
strategy.
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