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ABSTRACT

In this paper we investigate the performance of an ensem-
ble of convolutional, long short-term memory deep neural
networks (CLDNN) on a large vocabulary speech recogni-
tion task. To reduce the computational complexity of run-
ning multiple recognizers in parallel, we propose instead an
early system combination approach which requires the con-
struction of a static decoding network encoding the multiple
context-dependent state inventories from the distinct acoustic
models. To further reduce the computational load, the hid-
den units of those models can be shared while keeping the
output layers distinct, leading to a multitask training formula-
tion. However in contrast to the traditional multitask training,
our formulation uses all predicted outputs leading to a multi-
task system combination strategy. Results are presented on a
Voice Search task designed for children and outperform our
current production system.

Index Terms— system combination, multitask learning,
children’s speech, ROVER

1. INTRODUCTION

State-of-the-art acoustic models for automatic speech recog-
nition (ASR) are typically based on deep neural networks
(DNN) trained to predict the posterior probabilities of a set of
context-dependent (CD) HMM states [1]. In the past years,
various architectures have been developed ranging from deep
feed-forward neural networks, convolutional neural networks
(CNN) [2], long short-term memory (LSTM) networks [3], or
the recently proposed convolutional LSTM deep neural net-
work (CLDNN) [4].

While those models are often trained to predict a single
CD state corresponding to a short contextual input window
of log-spectral feature vectors, the multitask learning (MTL)
paradigm proposed in [5] was recently applied to acoustic
modeling [6, 7, 8]. In MTL learning, multiple related tasks are
jointly learned, such as for example predicting CD states and
context-dependent graphemes [7] simultaneously. It was ob-
served that when both the input features and the hidden units
are shared, MTL learning may improve generalization [5] as
the learning of one task may help learning the other tasks bet-
ter.

In [6], a DNN is trained to predict CD states as primary
task and either phone label, state context, or phone context as
secondary task. At recognition time the secondary softmax
outputs are discarded and only the primary softmax outputs
are used to carry out the search. A related approach is pro-
posed in [8] where a DNN is trained to jointly predict CD
states as well as monophone targets. During recognition, the
monophone outputs are ignored and the CD state posteriors
only are used to drive the search procedure. A similar MTL-
DNN architecture is used in [7] to jointly train a DNN model
to predict triphone and trigrapheme classes. The 2 sets of
class posteriors are then fed separately to a triphone-based
and a trigrapheme-based decoder and their recognition hy-
potheses are combined using ROVER [9].

In this work, we address multitask learning within the
context of system combination and propose to jointly train a
CLDNN-based system to predict CD state targets from mul-
tiple and distinct state inventories (e.g. CD and CI states).
In contrast to [6, 8], all predicted outputs are used and com-
bined into an integrated score at decode time, achieving some
form of early system integration with a single search proce-
dure, as opposed to the late system integration of [7] which
requires running multiple decodings in parallel. All exper-
iments are conducted on a large vocabulary speech recog-
nition task specifically designed for recognizing children’s
speech [10] using CLDNN [4] acoustic models trained on sev-
eral thousand hours of training data.

2. TASK AND DATABASES

The focus of this paper is to construct acoustic models specif-
ically designed for recognizing children’s speech to support
tasks such as the YouTube Kids mobile application [11].
While this application is targeted for children, it should de-
liver reasonable performance on adult speech as well. For that
reason, our training set consists of a mix of 1.9M voice search
(VS) utterances that were manually transcribed and labeled
as child speech combined with 1.3M manually transcribed
VS utterances from the general VS traffic, corresponding to a
grand total of 2,100 hours of speech. Two test sets are used
for evaluation purposes: a 25k VS utterances set from adult
speakers and a 16k VS utterances set from children. All our
data sets are anonymized.
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In this paper all our acoustic models are trained from
scratch using the online training procedure described in [12,
13]. Our baseline training procedure operates in 4 stages.
First, we flat-start a context-independent DNN model, run
decision tree state tying using Chou’s partitioning algo-
rithm [14], and train a DNN model with 8 hidden layers
of 2560 units on the resulting CD state inventory using a
cross-entropy objective function. Then, we refine our DNN
model using sequence training until convergence. Next, we
use the alignments obtained from the sequence-trained DNN
to bootstrap a CLDNN model using a cross-entropy criterion.
Last, we refine the CLDNN model using sequence training.
The topology of the CLDNN model consists of one CNN
layer, 2 LSTM layers and 2 DNN layers, described in detail
in [10]. The acoustic features are 40-dim log mel-spaced
filterbank coefficient without any temporal context. The re-
current network is unrolled for 20 time steps for training and
the output of the state label is delayed by 5 frames since we
found that information about future frames helps predicting
the label of the current frame [10].

All evaluations are conducted using a child-friendly lan-
guage model (LM) consisting of about 100M n-grams for a
vocabulary of 4.6M words. The LM was constructed accord-
ing to the procedure described in [10] which greatly reduces
the chance of outputting an offensive transcript compared to
the language model used in the general VS application.

3. SYSTEM COMBINATION

System combination is often used in speech recognition as a
post-recognition strategy to combine the outputs of multiple
systems for example using a majority voting approach such
as ROVER [9] or confusion network combination [15]. Ide-
ally, one would like to design those systems to have similar
performance but make independent errors so that they would
benefit from a voting-based combination strategy. Unfortu-
nately, while work such as [16] enforces some complementar-
ity among the different systems being trained, most acoustic
modeling approaches to train an ensemble rely on heuristics
such as using different input feature representations or dif-
ferent system architectures. In this work, we also rely on an
ad-hoc approach to build an ensemble by constructing mul-
tiple CD state inventories via randomization of the decision
tree state tying procedure [17]. While there is no theoretical
guarantee that such an ensemble training strategy would lead
to improved recognition accuracy, it was shown to be effective
on various tasks [17, 18]. In addition, we will see that such a
procedure fits well with the notion of MTL learning since the
multiple systems operate on the same input features, define
related classification tasks and are candidate for sharing their
hidden units.

In section 3.1, we first illustrate that an ensemble of mul-
tiple CLDNN-based acoustic models trained on various CD
state inventories either of different sizes or constructed using

randomized decision trees can lead to significant error reduc-
tions when their recognition hypotheses are combined with
majority-voting ROVER. Unfortunately, such a late combina-
tion strategy is computationally expensive as it requires run-
ning multiple recognizers in parallel. To lower the computa-
tional requirements, we then describe in Section 3.2 an early
combination strategy which combines the acoustic scores of
different models taking into account the distinct CD state in-
ventories and enabling the use of a single decoding procedure.
Next, in Section 4, rather than training those acoustic mod-
els independently, we instead cast the problem as a multitask
learning procedure by sharing the input and all hidden lay-
ers of those CLDNN models while keeping distinct softmax
outputs corresponding to the different CD state inventories.

3.1. Late system combination

In [17], multiple GMM-HMM acoustic models were con-
structed by randomizing the phonetic decision tree state tying
procedure. Unlike the regular CART-based decision tree pro-
cedure which grows each tree by selecting an optimal binary
split at each step, the randomized procedure randomly selects
a near-optimal split from the top N best split candidates with
N typically set to 5. By repeating the state tying procedure
multiple times using random seeds, one can then construct a
distinct system for each state inventory.

In this paper, we construct our decision trees using Chou’s
partitioning algorithm which avoids having to specify a set of
phonetic questions as required when using CART. The ran-
domization of the clustering is carried out slightly differently
compared to CART. Chou’s algorithm includes a K-means
step which iteratively assigns states to clusters and recom-
putes the clusters’ centroids, repeating this procedure until
convergence. Rather than iterating until convergence, we ran-
domly stop the K-means partitioning in the last 5 steps before
reaching convergence. This provides sufficient randomization
to construct multiple state inventories in a systematic fashion
without impairing the quality of the resulting model, as illus-
trated next.

Table 1 demonstrates the effectiveness of this approach on
3 different test sets. An ensemble of 5 independently trained
CLDNN models is constructed using sequence training. The
first 3 systems have distinct CD state inventories of 12k states
each constructed via randomization and the last 2 systems
have 6k states each, also constructed via randomization. One
can notice that those 5 systems have very similar performance
and that the size of the CD state inventories (6k vs. 12k states)
has little impact on the word error rate. The second part of Ta-
ble 1 reports the WER when applying ROVER on the output
of the first 3, 4 and 5 systems. On all test sets, a significant 5%
to 7% WER reduction is obtained at the expense of running 5
systems in parallel.
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Individual Systems Child Adult
#1 (12k states) 9.4% 13.2%
#2 (12k states) 9.7% 13.4%
#3 (12k states) 9.4% 13.3%
#4 (6k states) 9.6% 13.3%
#5 (6k states) 9.4% 13.4%
ROVER Child Adult
#1, #2, #3 8.9% 12.6%
#1, #2, #3, #4 8.8% 12.4%
#1, #2, #3, #4, #5 8.7% 12.3%

Table 1. Top: Individual WER on the Child and Adult test
sets (%) for 3 systems with a 12k CD state inventory and 2
systems with a 6k CD state inventory. Bottom: ROVER be-
tween systems #1 to #3, #1 to #4, and #1 to #5.

3.2. Early system combination

To avoid running multiple recognizers in parallel, we pro-
pose to use instead a single decoder and combine the acoustic
scores of the different models during the search. Our decoder
relies extensively on Finite State Transducer (FST) technol-
ogy [19] and operates on a static decoding graph constructed
by composing a context-dependency transducer C with a lex-
icon transducer L and a grammar transducer G. The C trans-
ducer is defined by the decision tree state tying procedure
and converts sequences of HMM symbols onto sequences of
phone symbols. Note that the size of C is related to the degree
of tying between states and that a larger CD state inventory
will lead to a larger C transducer. The L transducer trans-
lates sequences of phone symbols into sequences of words,
and the G transducer attaches language model probabilities
to the sequences of words. The resulting C ◦ L ◦ G graph,
denoted CLG for short, translates sequences of HMM sym-
bols onto weighted sequences of words and is used to drive
the search procedure. During search, HMM arcs are dynami-
cally expanded onto their corresponding sequence of CD state
symbols. Such a graph structure combined with the acoustic
model providing p(X|S) where X is the input feature vector
and S a CD state from the CD state inventory enables running
Viterbi search. Note that when using DNN-based acoustic
models, p(X|S) is approximated as p(S|X)/p(S), the pos-
terior probability of state S provided by the softmax output
scaled by the prior distribution of state S.

To enable the use of a single decoding procedure com-
bining the acoustic scores of multiple models with different
state inventories, we have to construct a single CLG graph
where the HMM arcs are defined on tuples of HMM symbols
from the multiple systems rather than a single HMM label.
In many regards this is similar to the use of decision tree ar-
rays described in [20] for dynamic decoders but applied in our
case to a static decoder. The procedure to construct this mod-
ified CLG graph only involves modifying the C transducer
and is otherwise unchanged. Our approach also bears some

similarity with the work in [21] which integrates two decision
trees with leaves holding a 2-tuples of state indices, as well as
with the work in [22] which uses a single decoder integrating
multiple models.

We will describe our procedure using an example with
2 systems but it can be generalized to an arbitrary num-
ber of systems. Suppose that a given CD state inven-
tory is constructed for a first system where a given tri-
phone, say h-@+V, represents center phone @ with phone
h and V as left and right context. Lets assume that this
triphone is mapped to a given HMM symbol, say HMM1

5,
defined as a sequence of CD state symbols, for example
HMM1

5 ≡ (CD1
1 21,CD1

2 35,CD1
3 42) corresponding to a 3-

state HMM topology. The superscript used on the HMM
and CD state symbol names refers to the system index (here
system 1) while the subscript on the CD state names refers to
the HMM state position (1, 2 or 3, assuming a 3-state HMM
topology) and tied-state indices and the subscript on the
HMM names refers to the HMM indices. For the sake of this
example, the CD states and HMMs indices are arbitrary. Sup-
pose also that a second state inventory is constructed, map-
ping the same triphone h-@+V to, say, HMM symbol HMM2

9

defined for example as HMM2
9 ≡ (CD2

1 53,CD2
2 5,CD2

3 17).
Continuing with this example, we can then define a

“meta” HMM symbol to represent triphone h-@+V as a tuple
of HMM symbols from the individual systems, for example
here HMM′

7 ≡ 〈HMM1
5,HMM2

9〉. One can then enumerate
all possible triphones and construct the entire meta-HMM
inventory from the corresponding tuples of system-specific
HMM symbols. This results in the definition of a meta C
transducer translating sequences of HMM tuples onto phone
sequences. If we further assume that HMMs have the same
topology in both systems, each meta HMM symbol can be
represented as a sequence of meta CD state symbols, for ex-
ample, HMM′

7 ≡ (CD′
1 6,CD′

2 1,CD′
3 23), with each meta

CD state symbol defined as a tuple of CD state symbols from
the individual systems, here CD′

1 6 ≡ 〈CD1
1 21,CD2

1 53〉,
CD′

2 1 ≡ 〈CD1
2 35,CD2

2 5〉, and CD′
3 23 ≡ 〈CD1

3 42,CD2
3 17〉.

The meta-C transducer can be directly used to construct the
decoding graph leading to a graph translating sequences of
HMM tuples onto word sequences. In Table 2, we report
the number of CD states and HMM symbols corresponding
to individual system configurations and the resulting meta-C
transducer obtained by combining those individual C trans-
ducers. One can observe that with a CD state inventory of
12k states, the number of HMM symbols is around 43k. A
meta-C transducer combining those two 12k state systems
leads to a total number of ∼56k meta-HMM symbols and
combining all 4 systems leads to a total number of ∼60k
meta-HMM symbols. Despite this increase in the number of
HMM symbols, it has a negligeable impact on the size of the
resulting static CLG graph.

Note that the graph construction described above should
be accompanied with specifying how to compute p(X|S′)

591



System # CD states # HMMs
#1 12,000 43,538
#2 12,000 42,616
#4 6,000 29,456
#5 6,000 33,814
Meta(#1, #2) 46,541 55,981
Meta(#4, #5) 25,567 50,356
Meta(#1, #2, #4, #5) 84,961 60,751

Table 2. Number of CD-state and HMM symbols for 4 indi-
vidual systems and corresponding number of meta CD states
and meta HMM symbols obtained by constructing a meta-C
transducer combining systems (#1, #2), systems (#4, #5) and
all 4 systems.

where S′ is an arbitrary meta CD state defined as a tuple of
CD states from the 2 systems, S′ ≡ 〈S1, S2〉. Specifically, we
define p(X|〈S1, S2〉) = f(p(X|S1), p(X|S2)) where f() is
an arbitrary predefined function defining how to combine the
acoustic scores of the individual systems. It can for example
be defined to compute the average of the acoustics scores of
the different systems or to select the highest likelihood score
from the ensemble. Note that because our decoder operates
on negative log-probabilities or costs, selecting the highest
likelihood score is equivalent to selecting the minimum cost
and we will use the term cost hereafter. In Table 3 we report
the WER obtained using a single decoding graph for different
system configurations. The top part reports the WER using a
single graph constructed from 2 systems with 12k CD states
each using a score combination function returning either the
cost of the first system, of the second system, or selecting the
minimum cost between the 2 systems and shows that the early
integration of the acoustic score provides an absolute ∼0.4%
WER reduction over the individual system on the Child test
set. The second part of the table report similar results but
using 2 systems of 6k states each. Last, we also report re-
sults using a single decoding graph integrating those 4 acous-
tic models, leading to 9.0% WER. This is slighly worse than
the late system combination results reported in Table 1 but of-
fers a significant reduction of the computational cost since it
involves a single decoding.

4. MULTITASK TRAINING

Given that the different systems constructed in Section 3 op-
erate on the same input features and correspond to related
tasks (predicting tied-states from different CD states inven-
tories), the training procedure can be reformulated as a mul-
titask learning. Instead of training the multiple systems inde-
pendently, as represented on the left part of Fig. 1, we share
the internal structure of our CLDNN models keeping only dis-
tinct softmax outputs corresponding to the different CD state
inventories. In essence, the network architecture is very sim-
ilar to the one used in the multitask learning procedure pro-

System Child Adult
#1 (12k states) 9.5% 13.2%
#2 (12k states) 9.6% 13.3%
MinCost(#1, #2) 9.1% 12.8%
#4 (6k states) 9.6% 13.3%
#5 (6k states) 9.4% 13.4%
MinCost(#4, #5) 9.2% 12.8%
MinCost(#1, #2, #4, #5) 9.0% 12.8%

Table 3. Top part: WERs (%) using a single decoding graph
constructed from model #1 and #2 and using acoustic costs
from model #1 only, model #2 only, or the minimum cost be-
tween model #1 and #2. Middle part: Similar to top part but
using model #4 and #5. Bottom part: WER using a single
decoding graph constructed from all 4 models and using min-
imum cost between all models.

posed in [8] except that in our case all softmax layers attempt
to predict CD state targets (from different inventories). How-
ever, a significant difference w.r.t. the work in [8] is that at
recognition time, all softmax outputs are used and integrated
during the search based on the procedure described in Sec-
tion 3.2.

In a first series of experiments we trained 2 DNNs based
on 2 sets of 6k CD-states (obtained via randomized deci-
sion trees) first using cross-entropy training and followed by
sequence training. Each training utterance was then sepa-
rately aligned using the 2 models, so that each training frame
would be labeled with a pair of CD states, one from each
system. Those multi CD state targets were then used to train
a CLDNN model using cross-entropy in a multitask fash-
ion, as represented in Fig. 2. Note that unlike the previous
sections where all CLDNN models were sequence-trained,
all CLDNN models in this section are trained using cross-
entropy since multitask training is not directly amenable to
sequence training. As in Section 3.2, a single decoding graph
was constructed from the multiple CD state inventories and
recognition was carried out using either the softmax output
from the first or second CD state inventory or a combina-
tion of their acoustic costs using a minimum cost function.
Results are given in Table 4. Considering that single-task
training of a 12k states CLDNN using cross entropy gives a
11.0% WER on the Child test set, the multitask training does
not here lead to a significant performance difference over
single task training.

To further evaluate the performance of multitask train-
ing and for faster experimental turnaround, we adopted a
slightly different training procedure where an existing 12k
states sequence-trained DNN model was used to align all our
training data and the state alignments were relabeled based
on various CD state inventories, as represented in Fig. 3.
We first constructed a set of targets using 2 softmax out-
puts, one corresponding to a 12k CD state inventory and the
other a 1k CD state inventory and ran multitask learning of a
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Score 
combination

+
Search

Score 
combination

+
Search

Fig. 1. Single-task training (left): the models are trained independently and their scores are combined during search. Joint
multitask training (right): the model is trained to jointly predict multiple CD state targets and scores are combined during
search.

DNN #2 
CE Train

DNN #1 
CE Train

DNN #1 
Seq. Train

DNN #2 
Seq. Train

Align #1

Align #2

CLDNN 
CE Train

Fig. 2. Multitask training procedure using individual models
for alignment.

System Child Adult
Softmax#1 (6k states) 11.0% 14.2%
Softmax#2 (6k states) 11.0% 14.3%
MinCost(#1, #2) 10.9% 14.2%

Table 4. Multitask training of 2 distinct 6k CD state invento-
ries. Recognition is carried out using a single decoding graph
and selecting either the first softmax outputs, second softmax
outputs, or minimum cost combination during search.

cross-entropy CLDNN model on those targets. Experimental
results are given in Table 5. As expected, decoding using the
1k state softmax outputs performs significantly worse than
when using the 12k state softmax outputs. When combining
both outputs during search using the minimum cost combina-
tion, we did not observe any performance improvement over
using the 12k outputs only. Given the size of our training
set ( 2,100 hours), this seems to confirm some of the results
from [8] where multitask training led to diminishing returns
for increasing amount of training data.

We then constructed 3 CD state inventories, 2 consisting
of 6k CD states and one of 1k CD states and ran multitask
training of a cross-entropy CLDNN model on those 3 out-
put targets. Results are available in Table 6. Despite hav-
ing the same total number of output targets, this system per-

Decision 
Tree #1

DNN CE Train DNN Seq. Train Align

State 
relabeling #1

CLDNN 
CE Train

Decision 
Tree #2

State 
relabeling #2

Fig. 3. Multitask training procedure using a common align-
ment model and relabeling the resulting state sequence based
on different decision trees.

System Child Adult
Softmax#1 (12k states) 11.3% 14.6%
Softmax#2 (1k states) 12.4% 16.0%
MinCost(#1, #2) 11.3% 14.7%

Table 5. Multitask training for 12k/1k CD state inventories.
Recognition is carried out using a single decoding graph and
selecting the costs from either the first softmax, second soft-
max, or minimum cost combination during search.

formed slightly worse than when using the 12k/1k set of tar-
gets above. Again, the multitask training does not lead to any
performance improvement.

5. CONCLUSIONS

In this paper, we showed that multiple CLDNN-based acous-
tic models trained on distinct state inventories constructed us-
ing randomized decision trees can outperform a single system
when using either late or early system combination. While a
late combination approach such as ROVER may not be attrac-
tive since it requires running multiple recognizers in parallel,
we have proposed to construct a specialized C transducer en-
coding the multiple decision trees on each arc. This enables
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System Child Adult
Softmax#1 (6k states) 11.5% 15.0%
Softmax#2 (6k states) 11.5% 15.0%
Softmax#3 (1k states) 12.5% 16.4%
MinCost(#1, #2, #3) 11.5% 15.1%

Table 6. Multitask training for 6k/6k/1k state inventories.
Recognition is carried out using a single decoding graph and
selecting the costs either from the first softmax, second soft-
max, or minimum cost combination during search.

the construction of a single decoding graph which can be used
to support running recognition using multiple acoustic mod-
els with different state inventories, either individually or by
combining their scores during the search. Using a recently
improved language model, an early combination of 4 acous-
tic models gives an 8.0% WER on the Child test set, signif-
icantly outperforming our current production models which
operates at a 8.7% WER. To further reduce the computational
load, those multiple acoustic models can share their input and
hidden units, leading to a multitask training formulation. Un-
fortunately, we did not observe any learning transfer between
the different tasks and the multitask training did not improve
performance over single task training, which we explain by
the large amount of training data used in our experiments.
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