ACOUSTIC MODELING WITH NEURAL GRAPH EMBEDDINGS

Yuzong Liu, Katrin Kirchhoff

Department of Electrical Engineering
University of Washington, Seattle, WA 98195

ABSTRACT

Graph-based learning (GBL) is a form of semi-supervised
learning that has been successfully exploited in acoustic mod-
eling in the past. It utilizes manifold information in speech
data that is represented as a joint similarity graph over train-
ing and test samples. Typically, GBL is used at the output
level of an acoustic classifier; however, this setup is difficult
to scale to large data sets, and the graph-based learner is not
optimized jointly with other components of the speech recog-
nition system. In this paper we explore a different approach
where the similarity graph is first embedded into continuous
space using a neural autoencoder. Features derived from this
encoding are then used at the input level to a standard DNN-
based speech recognizer. We demonstrate improved scalabil-
ity and performance compared to the standard GBL approach
as well as significant improvements in word error rate on a
medium-vocabulary Switchboard task.

Index Terms— Acoustic modeling, deep neural net-
works, graph-based learning

1. INTRODUCTION

Deep neural network (DNN) based classification has been
shown to achieve superior performance on large-scale conver-
sational automatic speech recognition (ASR) tasks by many
research groups[1, 2, 3, 4, 5, 6, 7], and has become the state-
of-the-art paradigm for acoustic modeling. In our own recent
work [8, 9], we have explored complementary machine learn-
ing techniques that can further improve DNN-based acoustic
modeling. In particular, we have proposed the integration
of graph-based semi-supervised learning into DNN-based
acoustic modeling, which has consistently resulted in sig-
nificant improvements in frame classification accuracy and
reductions in word error rates on several acoustic modeling
and ASR tasks.

Graph-based learning (GBL) jointly models labeled
(training) and unlabeled (test) data as a weighted graph.
The nodes of the graph represent data samples and the
edge weights encode pairwise similarities between samples.
Graph-based semi-supervised learning (SSL) methods as-
sume that the data distribution follows a low-dimensional
manifold (represented by the graph) and constrain the la-

978-1-4799-7291-3/15/$31.00 ©2015 IEEE

581

bel assignment to vary smoothly along the manifold. This
means that samples that are close to each other in the graph
(connected by an edge with a high weight) are encouraged
to receive the same labels, whereas samples that are distant
from each other are more likely to receive different labels. By
exploiting smoothness constraints we can often achieve more
accurate classifications as well as an implicit adaptation to the
test data. Unlike standard supervised classification models
used in acoustic modeling (including DNN-based classifica-
tion), this method seeks to exploit similarities between differ-
ent test samples in addition to similarities between training
and test samples. It thus provides complementary information
beyond that contained in the training data.

Previous applications of GBL to acoustic modeling
[10, 11, 12, 13, 8] have shown considerable improvements in
frame-level classification accuracy. More recently [9] we re-
ported improvements in both frame-level accuracy and word
error rate over a standard DNN baseline system. However,
our previous work has also identified two main drawbacks
of the standard GBL setup: First, although the frame-level
classification accuracy consistently improves it does not al-
ways result in decreases in word error rate; rather, word error
rates only decrease when the frame-level improvement is
substantial. In the standard setup the graph-based learner
is trained and applied independently at the output level of
a DNN-based HMM state classifier. The resulting modified
posterior distributions are then combined with the original
posteriors and are used for lattice rescoring. Thus, the GBL is
not optimized jointly with other system components. Second,
graph construction incurs a high computational cost, which
limits the scalability to large data sets.

In this paper, we therefore propose a different framework
for integrating GBL, where the information provided by the
graph is used at the input level to the DNN-based classifier: by
embedding the similarity graph into continuous space through
an autoencoder we learn novel features that are then used di-
rectly in the input layer to the DNN. The DNN learner can
thus implicitly combine different information sources in the
best possible way. While neural graph embeddings have been
utilized previously in clustering [14] and in natural language
understanding [15], their use in acoustic modeling is to our
knowledge novel. In addition, we address the computational
issues by landmark-based graph construction, which reduces

ASRU 2015

the cost by orders of magnitude while yielding good perfor-
mance.

The paper is organized as follows: in Section 2, we give
a brief overview of the standard GBL framework for DNN-
based acoustic modeling; in Section 3, we explain the graph
embedded features; in Section 4, we describe the data and
baseline systems; in Section 5 we show the experimental re-
sults of the proposed method, and we conclude in Section 6.

2. GRAPH-BASED SSL FOR ACOUSTIC MODELING

In this section, we give a brief review of standard graph-based
SSL as used in [9]. We define the following notation: We have
a set of labeled data £ = {(x;,r;)}._,, and a set of unlabeled
data Y = {xz}ii}*+1 x; € R? is a d-dimensional acous-
tic feature vector for a given sample (frame) ¢. For acous-
tic modeling, x is usually an MFCC or PLP feature vector,
possibly with additional preprocessing steps such as splicing,
LDA or MLLR transformations, etc. r; € R™ is the reference
distribution over class labels (e.g., phone labels, HMM state
labels, etc.) for sample ¢. [and u are the number of frames
in the labeled (training) and unlabeled (test) set, respectively.
We construct a graph G = {V, E, W} over all samples from
L and U, where V is the set of nodes in the graph (represent-
ing samples in LUU), E is the set of edges that connect a pair
of nodes ¢ and j, and each edge is associated with a weight
w;; that measures the similarity between them (an example is
shown in Figure 1). The goal is to infer the class label distri-
butions for all samples in U according to an objective function
defined on the graph G.

We use a learning procedure called prior-regularized
measure propagation (pMP) [16, 8], which minimizes the
following objective function:

l n
LG) = Y Dru(rillpi)+p1 > Y wiDrr(pillp;)
i=1

i=1 jeN;

+v > Dir(pil[Bi) 1

i=1

Here, {r; } is reference label distribution, {p; } is the predicted
label distribution we want to optimize, and {p; } is a prior la-
bel distribution. D (-, -) is the Kullback-Leibler divergence
for a pair of probability distribution. w;; is the similarity be-
tween sample 7 and j. A is the set of nearest neighbor of
sample 7. The first term of this objective function ensures that
the predicted probability distribution matches the given distri-
bution on labeled vertices; the second term enforces a smooth
label assignment along the graph, and the third term penal-
izes divergence of the predicted label distribution from some
prior distribution. Inference can be achieved using alternating
minimization.

The graph is a k nearest-neighbor (kNN) graph con-
structed using fast kNN search as described in [17, 10] and
symmetrization, such that if sample ¢ is one of the nearest

582

Unlabeled dta ‘

(o) (=9 () ()

Labeled Phones

Unlabeled Phones

Labeled data

Fig. 1. Example of a data graph for GBL in acoustic model-
ing.

neighbors of sample j, then we also add j to the nearest
neighbors of sample 7. Nearest neighbors are obtained from
both £ and /. In [9] we compared various feature represen-
tations for the kNN search and showed that bottleneck layer
features obtained from a DNN yielded the best frame-level
HMM state classification accuracy as well as word error rate.
After graph construction we run inference on the graph and
derive a new set of HMM state posteriors. We convert the pos-
teriors into likelihoods by dividing by the prior HMM state
distribution and combine the scores with the regular acoustic
and language model scores for lattice rescoring. In [9] we
showed that this procedure resulted in reduced word error
rates on small to medium-vocabulary recognition tasks, and
that it compared favorably to other semi-supervised learning
schemes like self-training.

However, there are several important issues worth point-
ing out. First, graph-based SSL in its basic form is computa-
tionally complex since it requires the construction and storage
of a huge graph built over all training and testing samples. For
instance, a 100-hour speech task contains 40 million frames
which is a severe bottleneck, even with fast and approximate
nearest neighbor search approaches [18, 19]. Large graphs
also lead to inefficient inference during test-time. The naive
approach to solve graph-based SSL has O(n?) complexity;
even with iterative solvers, inference can still be prohibitive.
Approaches to alleviating the computational cost include se-
lecting only a subset of the training data, either randomly or
according to a principled objective function (e.g., [20, 21, 22])
or clustering data points and selecting cluster centroids as
representative samples. Second, standard graph-based SSL
is applied to the output of a DNN classifier and attempts to
improve its accuracy. In past experiments we have observed
that this usually leads to significant improvements in frame-
level accuracy; however, the word error rate does not always
reflect these improvements since not all system components

are optimized jointly.

3. GRAPH-EMBEDDING FEATURES

In this section we describe how the drawbacks described
above can be addressed by utilizing “graph-embedding fea-
tures”, i.e., continuous features derived from a similarity
graph that can be used directly as input to a standard DNN-
based classifier in a speech recognition system.

3.1. Related Work

Graph embeddings have recently been proposed in several re-
lated fields. In [14], a deep stacked autoencoder is trained to
learn compact graph-embedding features for the purpose of
clustering. In that work, the input to the autoencoder consists
of the row vectors of the normalized matrix representing the
similarity graph: define the similarity matrix as S € R"*",
and the degree matrix as D = diag{di,ds,- - ,d,}, where
d; is the degree of node 4. The resulting input vector for sam-
ple i is given as d%Si, where S; is the ith row vector of S.
After training, the hidden layers of the autoencoder contain a
shared, compact representation of the entire graph. The non-
linear activation outputs from the last hidden layer are ex-
tracted as the graph-embedding features, which are then used
as inputs to a k-means clustering algorithm. The authors also
show a theoretical connection between deep neural graph em-
beddings and spectral clustering. In [15], the authors use neu-
ral embeddings of a semantic knowledge-graph for the pur-
pose of semantic parsing.

The framework in [14] is not directly scalable to our prob-
lem because of the huge construction overhead of the similar-
ity matrix S. First, as described above using the dense (or
even the kNN) similarity graph would require too much com-
putation for large data sets. Second, the similarity graph in
[14] is built over one global data set. However, we would like
to avoid building a similarity graph and subsequently retrain-
ing the autoencoder and the DNN classifier for every new test
data set that we encounter, which would become impractical
in real world acoustic modeling task.

3.2. Training Data Set Compression

Our goal is to learn graph-embedding features in a compu-
tationally feasible way. In previous work on manifold learn-
ing [23] it was shown how large-scale graph construction can
be rendered manageable by selecting a much smaller set of
“landmark” samples instead of the entire set of training sam-
ples.! Landmarks can be obtained by uniform subsampling of
the original data set, or by k-means clustering and using the
resulting cluster centroids as representative samples. We use

'The use of the term “landmark” here is unrelated to acoustic-phonetic
landmarks.

583

the latter in this study. Thus, given a query sample we per-
form nearest neighbor search using a set of landmarks in each
set rather than searching in the entire labeled training set and
unlabeled set.

3.3. Graph-Embedding Features for Acoustic Modeling

Rather than training graph embeddings from the raw similar-
ity matrix, we provide additional information about the near-
est neighbors to the autoencoder. Starting from the concept of
a kNN graph, we denote the size-k set of nearest neighbors of
node v; as \,,. We define a neighborhood encoding vector
n; that contains information about NV, as:

ni:[ll,lg,"' ,l]g] VJ[]II,,I{'—)UJ GNUJ (2)

Here, 1; is an encoding vector of the class label distribu-
tion associated with node v;. We compare the following two
versions for 1:

One-hot vector representation: This is a binary vector rep-
resentation with 1 representing the top-scoring class and 0 for
all other classes. For training samples, the top-scoring class is
determined by forced alignment of the training transcriptions
with the acoustic data; for test samples, they are determined
by a first-pass decoding output. Rather than utilizing HMM
state labels, which would result in vectors of high dimension-
ality, we use phone classes.

Soft-label representation: This is the full probability distri-
bution over class labels obtained from a supervised classifier.
We can either use the DNN classifier from our baseline ASR
system to compute the posteriors, or we can train a separate
classifier. In our case we train a separate simple phone classi-
fier using a subset of the entire data, which is run concurrently
to the DNN.

Having obtained the neighborhood encoding vectors for
the training samples we train an autoencoder to map them to
a more compact representation (see Figure 2). The input to
the autoencoder consists of the neighborhood encoding vec-
tors ny, ..., 0y, i.e., the autoencoder is trained on the training
samples only. We thus depart from previous graph embed-
ding approaches in that the autoencoder is not trained over
all samples jointly; this is to avoid having to retrain the en-
coder for each new test set. The autoencoder maps an input
vector to a hidden representation via a nonlinear transforma-
tion, defined as g = s(W®n + b(1)). The hidden repre-
sentation is then passed through another nonlinear transfor-
mation to reconstruct the input, i.e. i = s(W®g + b(?).
WO, W b b® are the parameters of the network and
s is a nonlinear activation function. To train the autoencoder,
we minimize the reconstruction error ||n — n||2. The non-
linear activation output g provides the graph-embedding fea-
tures. For the test samples, the nearest neighbors are drawn
from the training and test set and their neighborhood encod-
ing vectors are then passed through the trained autoencoder
separately to derive g© and g¥.

Fig. 2. Autoencoder mapping of neighborhood encoding vec-
tors.

Two possible methods for using the graph-embedding fea-
tures as inputs to the DNN in a DNN-HMM ASR system are
shown in Figure 3. In this figure, a corresponds to the orig-
inal acoustic features; g and g¥ correspond to the graph-
embedding features for the labeled data (training) and un-
labeled data (test). For each test sample we find k nearest
neighbors in the labeled set £, and k nearest neighbors in the
unlabeled set /. We extract graph-embedding features g“
and g¥ separately and append them as shown in Figure 3.
In addition, we append s* and s, which are the similarity
values for the nearest neighbors in sets £ and /. For training
samples, g” and s* are simply duplicated to achieve the same
dimensionality.

Integration scheme 1
a
|:|—' Spiicing

L

Integration scheme 2

o

[

L
€ Spiors -+ [2 |

U

X

N
@0

w,n
<

72
<

Fig. 3. Two different ways of integrating graph-embedding
features during DNN training.

Figure 4 summarizes the proposed framework. Given
training data £ and test data U/, we first extract separate sets
of landmarks using k-means. We also select a subset of the
training data (10%) to train a simple MLP to produce the
soft-label representation of n. For the training data, kNN
search is performed using the landmarks of £; for the test
data, kNN search is performed using landmark sets of both
L and U. The autoencoder is trained using ny, ...,n; and is
applied to ny, ..., 4.

10%
| (we]
Training

Data
Data

kNN
search

kNN
search

Fig. 4. Procedure for extracting graph-embedding features.

584

Table 1. Word error rates of DNN-based baseline system for
the SVitchboard-II 10k task.

System Dev Eval
Baseline System | 32.04% | 32.17%
4. DATASETS

We evaluate the proposed framework on the SVitchboard-
II dataset [24], which can be downloaded from http:
//tinyurl.com/hglc—speech. SVitchboard-II is a
set of high-quality, low-complexity conversational English
speech corpora created from the original Switchboard-I
dataset. To create these corpora, subsets of Switchboard-I
were selected that are of high quality (acoustically represen-
tative) and low complexity (i.e., smaller vocabulary size).
We use the largest-vocabulary task in SVitchboard-II for this
study, which has a vocabulary size of 9983. The training,
development, and test sizes are 67642, 8491, and 8503 utter-
ances (69.1 hours, 8.8 hours and 8.8 hours), respectively. A
trigram backoff language model built on the training data is
used for decoding.

To train the baseline system we first train a triphone
GMM-HMM system. We train a monophone GMM with
flat start, using 13 MFCCs and their deltas and delta-deltas
(MFCC+A+AA). Cepstral mean normalization is performed
for each conversation side. After the monophone system has
been trained, we use it to train a context-dependent GMM
triphone model on top of it. The baseline DNN-HMM system
is then bootstrapped from this triphone GMM-HMM system:
we create a 4-layer network with 1024 nodes per layer. The
total number of senones in the DNN is 1864. We perform
greedy layer-wise supervised training [25, 1] on multiple
CPUs and GPUs using the Kaldi toolkit [26]. The input fea-
tures are spliced MFCCs (with a context window size of 4),
followed by an LDA transformation (without dimensionality
reduction) which is used to decorrelate the input features. The
resulting feature vector has 117 dimensions in total. We use
20 epochs to train the DNN, with a mini-batch size of 256.
For the first 15 epochs, we decrease the learning rate from
0.01 to 0.001 and fix the learning rate at 0.001 for the last
5 epochs. Table 1 shows the baseline DNN-HMM system’s
word error rate.

5. EXPERIMENTAL RESULTS

5.1. Standard GBL Baseline

We first conduct an experiment using the standard GBL
framework as described in Section 2. In line with [9] we use
the bottleneck layer features from a trained DNN and splice
them with a context window of 9 (i.e. + 4). The resulting
features are used to build a kNN graph (excluding silence
frames) of £ and /. Because the number of non-silence

frames in £ is around 17 millions, we perform uniform sub-
sampling to select 10% of the samples from L. For each
sample in the unlabeled set I/ we select 10 nearest neigh-
bors in £ and 10 in /. The pMP algorithm is then run on
the resulting graph, and a new set of HMM state posteriors
is obtained. The new posteriors are converted to acoustic
likelihoods by dividing the HMM state prior distribution.
These new likelihoods are then interpolated with the original
acoustic and language model scores for lattice rescoring. The
parameters of pMP are ;1 = 1076 and v = 8 x 1075; the
linear score combination weights are 0.2, 0.8, 8 for the GBL
score, acoustic model score and language model score, re-
spectively. All parameters are tuned on the development data.

5.2. Graph-Embedding Experiments

For the graph-embedding experiment we use the same bot-
tleneck layer feature representation of the data as in the pre-
ceding section. The number of frames in the training data is
around 25 million. We extract landmarks from this set using
k-means clustering. First, we assign each frame a phone la-
bel based on the forced alignment of training transcriptions.
For silence frames we run k-means with & = 64. For the
remaining non-silence frames, we run k-means with & = 32
for each of the 42 non-silence phone classes. The resulting
centroids are used as landmarks, resulting in 1408 landmarks,
which is 4 orders of magnitude less than the original graph
size. For each set (training, development and test), we create
a separate set of landmarks. We perform kNN search using
the landmark sets. The similarity measure we used is an RBF
kernel with Euclidean distance. For the training samples we
select 10 nearest neighbors in the landmark set of L. For the
test data we select 10 nearest neighbors in the landmark sets
of £ and U, respectively.

To extract the neighborhood encoding vectors we find the
10 nearest neighbors in the landmark sets of £ and U, re-
spectively. To generate the label-encoding vector 1, we exper-
iment with both a one-hot and a soft-label vector represen-
tation. The labels are those of the 43 phone classes. For a
one-hot encoding the frame-level forced alignment informa-
tion is used for the training data and the first-pass decoding
output for the test data. To create soft-label neighborhood
encoding vectors, we train a simple 3-layer multi-layer per-
ceptron (MLP) with /5 regularization for phone classification
using the Theano [27] toolkit. The hidden layer of the MLP
consists of 2000 nodes. The nonlinearity function in the MLP
is the tanh function. We train the MLP on a random 10%
subset of the entire training data using stochastic gradient de-
scent with a minibatch size of 128. The learning rate of the
MLP is 0.01 and the total number of epochs is 1000. The
regularization constant is set to 0.001. We use early stopping
during training. The MLP has a classification accuracy of
67% on a 1.2 million held-out dataset. The MLP outputs are
then used to generate phone label distributions for the land-

585

mark samples. The dimensionality of the resulting neigh-
borhood encoding vectors is 430 (43 phone classes and 10
nearest neighbors). After obtaining the neighborhood encod-
ing vectors for the training samples we train the autoencoder
and extract the hidden layer activation outputs as the graph-
embedding features for £. The graph-embedding features for
the test set I/ are generated by passing the neighborhood en-
coding vectors for U through the same autoencoder (without
retraining). We experimented with different dimensionalities
of the graph-embedding features (43 vs. 100 nodes in the hid-
den layer, respectively). The DNN classifier for the ASR sys-
tem is then trained using either of the two integration methods
described above in Section 3.

5.3. Results

Table 2 shows the results for different experiments. We first
compared the DNN baseline system with the standard GBL
method. We then compared graph-embedding features with
different nearest neighbor encoding schemes, viz. (1) one-
hot label distribution vector (experiments #1, #2, #3) and (2)
soft-encoding label distribution vector (experiments #5, #6).
We also compared different sizes for the hidden layer in the
autoencoder (43 vs. 100 hidden units). As another point of
comparison, we ran an experiment where we directly used
the neighborhood encoding vectors in the input layer of the
DNN, instead of first passing them through the autoencoder.

Table 2. Experiment Setup.

Setup Description
#1 One-hot; 43-d; integration scheme 2
#2 One-hot; 100-d; integration scheme 2
#3 One-hot; 43-d; integration scheme 1
#4 kNN w/o autoencoder; integration scheme 2
#5 Soft label; 43-d; integration scheme 2
#6 Soft label; 100-d; integration scheme 2

Table 3 shows the word error rates (WER) on the de-
velopment and/or test sets using the different setups. Bold-
face numbers indicate statistically significant improvements
(p < 0.05). The standard output-level GBL method only
resulted in a trivial decrease in word error rate, although the
frame-level HMM state classification accuracy (measured on
all non-silence frames in the development data) increased
from 32.5% in the baseline system to 38.2%. As discussed
above, a gain in frame accuracy under this scheme does not
always lead to a reduced WER. In Experiments 1, 2 and 3,
we obtained larger but non-significant improvements in word
error rate by using the graph-embedding features learned
from the one-hot label-encoding vectors. The reason why im-
provements were not larger may be due to the way we derived
the one-hot encodings: the labels of the training data were
derived using forced alignments whereas the labels of the test

data were derived using first-pass decoding output. The dis-
crepancy between the label accuracies could be a contributing
factor. In Experiment #4, which utilizes neighborhood en-
coding vectors in the DNN input layer directly, we again have
only a slight improvement. Using the soft label-encoding
vectors, however, (#5 and #6), we achieved an absolute im-
provement in word error rate of 1.5%. The dimensionality
of the hidden layer in the autoencoder (Experiment #1 vs. #2
and #5 vs. #6) does not have a consistent effect.

Table 3. Word error rates for standard GBL
vs. graph-embedding features.

framework

System Dev Test
DNN Baseline | 32.04% | 32.17%
+standard GBL | 31.95% | 32.13%

#1 31.65% | 32.05%
#2 31.76% | 31.98%
#3 31.76% | 32.00%
#4 31.75% | 31.79%
#5 30.57% | 30.59%
#6 30.61% | 30.71%

To further evaluate the performance of the graph-embedding
features we subsequently used several stronger baseline sys-
tems (Table 4). First, we increased the number of hidden units
per layer in the DNN from 1024 to 2048. In a separate exper-
iment we also used maxout [28], which tends to yield better
performance. For the maxout network, we used a group size
of 5 and set the number of groups to 800. The value of p of
the p-norm was set to 2. For both systems, we augmented the
original acoustic features with the graph-embedding features
following the setup in Experiment #5. We again see strong
improvements from utilizing graph-embedding features with
larger networks (first 2 rows of Table 4), with larger rela-
tive improvements than before. Maxout by itself already
significantly improves over the baseline DNN performance;
however, the combination with graph-embedding features
still reduces the WER further by about 0.5% absolute. We
also evaluate the performance of graph-embedding features
on top of a speaker-dependent DNN system. The input fea-
tures to the DNN system are 40-dimensional fMLLR features.
First, the spliced MFCC features (& 4 frames) are processed
using LDA followed by a semi-tied covariance transform.
Then, the fMLLR transform is applied to the features for
each conversation side. Table 4 shows that graph-embedding
features on top of the speaker-dependent system also achieve
consistent WER reductions.

Finally, Table 5 shows the results of an experiment where
we controlled for the overall number of parameters. The input
layer of the DNN when using the graph-embedding features
is generally larger than when using only acoustic features, re-
sulting in more parameters in the new DNN system. Hence,
we increased the size of the baseline DNN by increasing the

586

number of nodes in the hidden layer, and made the number
of parameters roughly the same for both networks. To do
this, we increased the number of nodes per layer from 1024
to 1145, resulting in 6.16 million parameters in total for the
baseline DNN. The DNN system in Experiment #5 is 6.15
million. Comparing the two systems, the system using graph
embedding gave a 1.4% absolute improvement on the test set.

Table 4. WER comparison with different baseline system.

] | Dev | Test |
2048, 4-layer DNN | 31.23% | 31.31%
+ graph embedding | 29.59% | 29.72%

Maxout 30.63% | 30.86%
+ graph embedding | 30.18% | 30.32%
SD-DNN 29.96% | 30.01%
+ graph embedding | 29.40% | 29.60%

Table 5. WER comparison controlled for the number of pa-
rameters.

Dev Test
1145, 4-layer DNN, # params: 6.16M | 31.89% | 32.01%
+ graph embedding, # params: 6.15M | 30.57% | 30.59%

Computational efficiency: We also highlight the effi-
ciency of the framework. Graph construction for the standard
output-level GBL method can take several hours or up to days
depending on the computational resources. The landmark-
based construction method proposed in this paper uses only
thousands of landmarks and thus achieves a speed-up of 3-
4 orders of magnitude. Although several steps are involved
in generating graph-embedding features (Figure 4), there is
very little computational overhead: the training time of the
MLP on one GPU is around 19 minutes; the training time of
the autoencoder on one GPU is 110 minutes. Furthermore,
these steps are only done once as part of the training process.
The efficiency makes this framework appealing for real-world
acoustic modeling task.

6. CONCLUSION

We have shown that graph-embedding features learned from
nearest-neighbor encodings yield significant improvements
on a 10k-vocabulary conversational ASR task. Future direc-
tions include and scaling this approch to larger vocabularies
and exploring deep neural embeddings using stacked au-
toencoders. Our framework might also be used to improve
recognition performance on low-resource languages, or as an
adaptation method to novel acoustic environments.
Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of Tesla K40 GPUs used for this research.

7. REFERENCES

[1] Frank Seide, Gang Li, and Dong Yu, ‘“Conversational
speech transcription using context-dependent deep neu-
ral networks.,” in Proceedings of Interspeech, 2011.

[2] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups,” Signal Processing Magazine, vol. 29,
no. 6, pp. 82-97, 2012.

[3] George E. Dahl, Dong Yu, Li Deng, and Alex Acero,
“Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition,” Audio,

Speech, and Language Processing, IEEE Transactions
on, vol. 20, no. 1, pp. 30-42, 2012.

[4] Tara N. Sainath, Abdel-rahman Mohamed, Brian Kings-
bury, and Bhuvana Ramabhadran, ‘“Deep convolu-
tional neural networks for LVCSR,” in Proceedings of
ICASSP. IEEE, 2013, pp. 8614-8618.

[5] Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton, “Speech recognition with deep recurrent neu-
ral networks,” in Proceedings of ICASSP. IEEE, 2013,
pp. 6645-6649.

[6] Hasim Sak, Andrew Senior, and Francoise Beaufays,
“Long short-term memory recurrent neural network ar-
chitectures for large scale acoustic modeling,” in Proc.
Annual Conference of the International Speech Commu-
nication Association (INTERSPEECH), 2014.

[7] George Saon, Hong-Kwang J Kuo, Steven Rennie, and
Michael Picheny, “The IBM 2015 English conver-
sational telephone speech recognition system,” arXiv
preprint arXiv:1505.05899, 2015.

[8] Yuzong Liu and Katrin Kirchhoff, “Graph-based semi-
supervised learning for phone and segment classifica-
tion,” in Proceedings of Annual Conference of the Inter-
national Speech Communication Association (INTER-
SPEECH), 2013.

[9] Yuzong Liu and Katrin Kirchhoff, “Graph-based semi-
supervised acoustic modeling in DNN-based speech
recognition,” in Proceedings of the IEEE Spoken Lan-
guage Technology Workshop (SLT). IEEE, 2014, pp.
177-182.

[10] A. Alexandrescu and K. Kirchhoff, “Graph-based learn-

ing for phonetic classification,” in Proceedings of ASRU,
2007.

587

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Subramanya and J.A. Bilmes, “Entropic graph regu-
larization in non-parametric semi-supervised classifica-
tion,” in Neural Information Processing Systems (NIPS),
Vancouver, Canada, December 2009.

A. Alexandrescu and K. Kirchhoff, “Phonetic classifi-
cation by controlled random walks,” in Proc. Annual

Conference of the International Speech Communication
Association (INTERSPEECH), 2011.

M. Orbach and K. Crammer, “Transductive phoneme
classification using local scaling and confidence,” in
Proceedings of IEEE 27th Convention of Electric and
Electronics Engineers in Israel, 2012.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-
Yan Liu, “Learning deep representations for graph clus-
tering,” in Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

Larry Heck and Hongzhao Huang, “Deep learning
of knowledge graph embeddings for semantic parsing
of Twitter dialogs,” in Proceedings of the 2nd IEEE
Global Conference on Signal and Information Process-
ing, 2014.

A. Subramanya and J. Bilmes, “Semi-supervised learn-
ing with measure propagation,” Tech. Rep. UWEE-TR-
2010-0004, University of Washington, 2010.

Andrew B Goldberg and Xiaojin Zhu, “Seeing stars
when there aren’t many stars: graph-based semi-
supervised learning for sentiment categorization,” in
Proceedings of the First Workshop on Graph Based
Methods for Natural Language Processing, 2006, pp.
45-52.

Jie Chen, Haw-ren Fang, and Yousef Saad, “Fast ap-
proximate k-nn graph construction for high dimensional
data via recursive Lanczos bisection,” Journal of Ma-
chine Learning Research, vol. 10, pp. 1989-2012, 2009.

Wei Dong, Charikar Moses, and Kai Li, “Efficient k-
nearest neighbor graph construction for generic similar-
ity measures,” in Proceedings of the 20th International
Conference on World Wide Web. ACM, 2011, pp. 577-
586.

Yuzong Liu, Kai Wei, Katrin Kirchhoff, Yisong Song,
and Jeff Bilmes, “Submodular feature selection for
high-dimensional acoustic score space,” in International
Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP). IEEE, 2013.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels,
and Jeff Bilmes, “Submodular subset selection for large-
scale speech training data,” Proceedings of ICASSP,
2014.

[22] Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes,
“Unsupervised submodular subset selection for speech
data,” in Proceedings of ICASSP, 2014.

[23] Vin De Silva and Joshua B. Tenenbaum, “Global versus
local methods in nonlinear dimensionality reduction,”
in Advances in Neural Information Processing Systems,
2002, pp. 705-712.

[24] Yuzong Liu, Rishabh Iyer, Katrin Kirchhoff, and Jeff
Bilmes, “SVitchboard II and FiSVer I: High-quality
limited-complexity corpora of conversational English
speech,” in Proc. Annual Conference of the Inter-
national Speech Communication Association (INTER-
SPEECH), Dresden, Germany, September 2015.

[25] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo
Larochelle, et al., “Greedy layer-wise training of deep
networks,” Advances in neural information processing
systems, vol. 19, pp. 153, 2007.

[26] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al., “The Kaldi speech recognition toolkit,” in Proc.
ASRU, 2011, pp. 1-4.

[27] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, and Yoshua Bengio, “Theano: new
features and speed improvements,” Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

[28] Xiaohui Zhang, Jan Trmal, Daniel Povey, and Sanjeev
Khudanpur, “Improving deep neural network acous-
tic models using generalized maxout networks,” Proc.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Pro-
cessing, 2014.

588

